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ABSTRACT

This thesis addresses the problem of distributed optimization and learning over multi-agent

networks. Our main focus is to design efficient algorithms for a class of nonconvex problems, defined

over networks in which each agent/node only has partial knowledge about the entire problem.

Multi-agent nonconvex optimization has gained much attention recently due to its wide applications

in big data analysis, sensor networks, signal processing, multi-agent network, resource allocation,

communication networks, just to name a few. In this work, we develop a general class of primal-dual

algorithms for distributed optimization problems in challenging setups, such as nonconvexity in loss

functions, nonsmooth regularizations, and coupling constraints. Further, we consider different setup

where each agent can only access the zeroth-order information (i.e., the functional values) of its

local functions. Rigorous convergence and rate of convergence analysis is provided for the proposed

algorithms. Our work represents one of the first attempts to address nonconvex optimization and

learning over networks.



www.manaraa.com

1

CHAPTER 1. INTRODUCTION

This research mainly focuses on designing algorithms for distributed nonconvex optimization

problems under different network topologies. Distributed nonconvex optimization problem has

found a wide range of applications in several areas, including data-intensive optimization [65, 146],

signal and information processing [47, 117], multi-agent network resource allocation [134], commu-

nication networks [82], just to name a few. In particular, it is a key enabler of many emerging “big

data” analytic tasks. In these data-intensive applications, the sheer volume and spatial/temporal

disparity of big data render centralized processing and storage a formidable task. This happens,

for instance, whenever the volume of data overwhelms the storage capacity of a single comput-

ing device. Moreover, collecting sensor-network data, which are observed across a large number

of spatially scattered centers/servers/agents, and routing all this local information to centralized

processors, under energy, privacy constraints and/or link/hardware failures, is often infeasible or

inefficient. Further, with the advent of high performance and parallel computing interfaces it is

reasonable to model the problem such that we are able to utilize these interfaces to accelerate the

computations.

Typically, distributed optimization problem can be expressed as minimizing the sum of addi-

tively separable cost functions plus a regularization function, given below

min
x∈X

g(x) :=

N∑
i=1

fi(x) + h(x), (1.1)

where N denotes the number of agents in the network; fi : RM → R represents some cost function

related to the agent i, X ⊂ RM is a convex set, and h(x) imposes some regularity such as sparsity

to the solution, or denotes the indicator function of a convex set. It is usually assumed that each

agent i has complete information on fi, and it can only communicate with its neighbors. Therefore

the key objectives of the individual agents are: 1) to achieve consensus with its neighbors about

the optimization variable; 2) to optimize the global objective function g(x).
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Figure 1.1: Left: Mesh Network (MNet); Right: Star Network (SNet)

We consider two popular network topologies, namely, the mesh network (MNet) (cf. Fig. 1.1

Left) and the star network (SNet) (cf. Fig. 1.1 Right). In the MNet, each node is connected via

undirected links to a subset of nodes. Such a network is very popular in a number of applications.

For example, in distributed signal processing [47, 117], each node can represent a sensor which

has limited communication capability hence can only talk to its neighbors. On the other hand,

SNet contains a central controller (i.e., the parent) which is connected to all other nodes (i.e., the

children), and there is no connection between the children. Such a network can be used to model

parallel computing architecture in which each child represents a computing node, and the parent

coordinates the computation of the children [145, 80, 55]. In our work, we consider these different

network topologies not only because they are capable of modeling a wide range of applications,

but more importantly, their unique characteristics lead to a number of open challenges in designing

distributed algorithms.

Extensive research has been done on developing algorithms for distributed optimization (for both

MNet and SNet), but these works are mostly restricted to the family of convex problems where

fi(x)’s are all convex functions (detailed literature review is relegated to the following chapters).

Once we go beyond the convexity, the literature is very scant. Therefore, this research is set out to

fill such an important gap. Below we briefly describe three applications that motivate distributed

nonconvex optimization.

• Distributed Sparse Principal Component Analysis. Principal component analysis

(PCA) aims to reduce the dimension of multi-variate data set, and has a wide range of

applications in science and engineering, see for example [50, 125, 121].
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Figure 1.2: Splitting data matrix across the rows

Finding the first sparse principal component (PC) is equivalent to solving the following opti-

mization problem

max ‖Dx‖22 − λr(x), s.t. ‖x‖22 ≤ 1 (1.2)

where D ∈ RQ×M is a centered data matrix, and ‖Dx‖22 represents the explained variance

of the first PC [72], r(x) is a sparsity-promoting regularizer, and λ > 0 is the penalization

parameter. In practice, r(x) can take the form of the `0 norm of x, or its approximations

such as the popular `1 norm, the log sum penalty (LSP) [22] and so on. In this research we

consider the more challenging scenario where the data matrix D is not available in a central

location, instead it is distributed over a network, and each agent has access to a mini-batch of

the data points. In particular, let Di ∈ RQi×M , i = 1, 2, · · ·N denote submatrices that consist

non-overlapping rows (or data samples) of D. That is, D = [D1;D2; · · · ;DN ]; see Figure 1.2.

According to this data model, the SPCA problem (1.2) can be reformulated as follows

min

N∑
i=1

−‖Dix‖22 + λr(x), s.t. ‖x‖22 ≤ 1. (1.3)

This problem is nonconvex because −‖Dix‖22 in the objective is a concave function. Further,

it is easy to see that this problem has the same form as that of (1.1), with fi(x) = −‖Dix‖22,

h(x) = λr(x), and X = {x ∈ RM ; s.t. ‖x‖22 ≤ 1}.

• Distributed Nonlinear Regression Problem. This application is about a distributed

regression problem. Consider the MNet, which consists of N agents, and each agent i has Qi
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local observation pairs (zij , bij); i = 1, 2, · · · , N , j = 1, 2, · · ·Qi. Suppose that each data point

is generated in the following manner:

bij =
1

1 + exp(−z>ijx)
+ εij ,

where εij denotes the additive noise following a zero mean Gaussian distribution. Denote

hi(x, zij) = 1
1+exp(−z>ijx)

, then we can form the following nonconvex nonlinear least square

problem [91]

min
x

N∑
i=1

Qi∑
j=1

[bij − hi(x, zij)]2 + r(x), (1.4)

where again r(x) is a sparsity promoting regularizer. Clearly, problem (1.4) is a special case

of (1.1), with fi(x) :=
∑Qi

j=1[bij − hi(x, zij)]2.

• Distributed Target Localization Problem. Consider a network of N agents collectively

aim to locate M target points. Let’s xi ∈ Rd, i = 1, 2, · · ·M denote the coordinate of the

each target location (d = 2 or 3). In target localization problem each agent i knows its

own location wi, as well as a noisy measurement dij of the squared distance to each target

points j, j = 1, 2, · · ·M . Therefore, this problem seeks to minimize the following nonconvex

optimization problem [26]

min
x

N∑
i=1

M∑
j=1

(dij − ‖xj − wi‖2)2, (1.5)

which is another special case of problem (1.1), with fi(x) =
∑M

j=1(dij−‖xj−wi‖2)2, h(x) = 0,

and X = RM .

The rest of this thesis contains three parts, as described below:

• Chapter 2. In this chapter we consider nonconvex optimization problem over the MNet (cf.

Fig. 1.1). Typically this problem is modeled as the following

min
x∈RM

g(x) :=
N∑
i=1

fi(x), (1.6)
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where each fi, i ∈ {1, · · · , N} := [N ] is a nonconvex cost function. To solve this problem we

propose a proximal primal-dual algorithm (Prox-PDA). We show that Prox-PDA converges

to the set of stationary solutions (satisfying the first-order optimality condition) in a globally

sublinear manner. We also show that Prox-PDA can be extended in several directions to

improve its practical performance. To the best of our knowledge, this is the first algorithm

that is capable of achieving global sublinear convergence rate for distributed nonconvex opti-

mization. Further, our work reveals an interesting connection between the primal-dual based

algorithm Prox-PDA and the primal-only fast distributed algorithms such as EXTRA [122].

Finally, we generalize the theory for Prox-PDA based algorithms to a challenging distributed

matrix factorization problem.

• Chapter 3. This chapter considers the SNet (given in Fig. 1.1 Right). Utilizing SNet we are

able to solve the following problem

min
x∈X

g(x) :=
1

N

N∑
i=1

fi(x) + f0(x) + p(x), (1.7)

where X is a closed and convex set; for each i ∈ {0, · · · , N}, fi is a smooth possibly nonconvex

function; p(x) is a lower semi-continuous convex but possibly nonsmooth function. Notice

that in this problem we are able to deal with nonsmooth term p(x) as well as constraint set

X in contrast to the problem (1.6). We propose a class of NonconvEx primal-dual SpliTTing

(NESTT) algorithms for this problem. The NESTT is one of the first stochastic algorithms

for distributed nonconvex nonsmooth optimization, with provable and nontrivial convergence

rates. The main contribution is the following. First, we show that NESTT converges sub-

linearly to a point belongs to stationary solution set of (1.7). Second, we show that NESTT

converges Q-linearly for certain nonconvex `1 penalized quadratic problems. To the best of

our knowledge, this is the first time that linear convergence is established for stochastic and

distributed optimization of such type of problems.

• Chapter 4. This chapter focuses on a general class of optimization problem given below

min
x∈X

g(x) := f(x) + h(x), s.t. Ax = b, (1.8)
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where f(x) : RN → R is a continuous smooth function (possibly nonconvex); A ∈ RM×N is a

rank deficient matrix; b ∈ RM is a given vector; X is a convex compact set; h(x) : RN → R

is a lower semi-continuous nonsmooth convex function.

Problem (1.8) subsumes a number of applications in the variety of domains, of which dis-

tributed composite optimization problem over MNet including nonconvex loss functions and

nonsmooth regularizations is a very important yet challenging problem. In what follows

we show how distributed optimization problems in different setups can be cast in general

formulation (1.8).

The exact consensus problem over networks. Consider a network which consists of N

agents who collectively optimize the following problem

min
y∈R

f(y) + h(y) :=

N∑
i=1

[fi(y) + hi(y)] , (1.9)

where fi(y) : R→ R is a smooth function, and hi(y) : R→ R is a convex, possibly nonsmooth

regularizer (here y is assumed to be scalar for ease of presentation). Note that both fi and

hi are local to agent i.

To integrate the structure of the network into problem (4.6), we consider MNet which is an

undirected, connected graph G = {V, E}, with |V| = N vertices and |E| = E edges. Each agent

can only communicate with its immediate neighbors, and it is responsible for optimizing one

component function fi regularized by hi. Define the node-edge incidence matrix A ∈ RE×N

as following: if e ∈ E and it connects vertex i and j with i > j, then Aev = 1 if v = i,

Aev = −1 if v = j and Aev = 0 otherwise. Using this definition, the signed graph Laplacian

matrix L− ∈ RN×N is given by

L− := ATA.

Introducing N new variables xi as the local copy of the global variable y, and define x :=

[x1; · · · ;xN ] ∈ RN , problem (4.6) can be equivalently expressed as

min
x∈RN

f(x) + h(x) :=
N∑
i=1

[
fi(xi) + hi(xi)

]
, s.t. Ax = 0. (1.10)
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This problem is precisely original problem (1.8) with correspondence X = RN , b = 0, f(x) :=∑N
i=1 fi(xi), and h(x) :=

∑N
i=1 hi(xi).

The partial consensus problem. In the previous application, the agents are required to

reach exact consensus, and such constraint is imposed through Ax = 0 in (4.7). In practice,

however, consensus is rarely achieved exactly, for example due to potential disturbances

in network communication; see detailed discussion in [75]. Further, in applications ranging

from distributed estimation to rare event detection, the data obtained by the agents, such

as harmful algal blooms, network activities, and local temperature, often exhibit distinctive

spatial structure [28]. The distributed problem in these settings can be best formulated by

using certain partial consensus model in which the local variables of an agent are only required

to be close to those of its neighbors. To model such partial consensus constraint, we denote

ξe as the permissible tolerance for e = (i, j) ∈ E , and replace the strict consensus constraint

xi − xj = 0 with ‖xi − xj‖2 ≤ ξe. Further, we define the link variable ze = xi − xj , and set

z := {ze}e∈E , Z := {z | ‖ze‖2 ≤ ξe ∀ e ∈ E}. Using these notations, the partial consensus

problem can be formulated as

min
x,z

f(x) + h(x) :=
N∑
i=1

[
fi(xi) + hi(xi)

]
(1.11)

s.t. Ax− z = 0, z ∈ Z,

which is again a special case of problem (1.8).

Notice that the application of optimization problem (1.8) are not limited to distributed op-

timization problem. More problems such as sparse subspace estimation will be discussed in

chapter Chapter 4.

In Chapter 4 we develop an Uzawa type [74] algorithm named PProx-PDA for problem (1.8).

One distinctive feature of the PProx-PDA is the use of a novel perturbation scheme for

both the primal and dual steps, which is designed to ensure a number of asymptotic con-

vergence and rate of convergence properties (to first-order stationary solutions). Specifically,

we show that when certain perturbation parameter remains constant across the iterations,



www.manaraa.com

8

the algorithm converges globally sublinearly to the set of approximate first-order stationary

solutions. Further, when the perturbation parameter diminishes to zero with appropriate

rate, the algorithm converges to the set of exact first-order stationary solutions. To the best

of our knowledge this is the first time that first-order methods with convergence and rate of

convergence guarantees are developed for problems in the form of (1.8).

• Chapter 5. This chapter focuses on nonconvex distributed optimization problem under the

challenging zeroth-order setup. A drawback for the algorithms in previous chapters is that

they require at least first-order gradient information in order to guarantee global convergence.

Unfortunately, in many real-world problems, obtaining such information can be very expen-

sive, if not impossible. For example, in simulation-based optimization [126], the objective

function of the problem under consideration can only be evaluated using repeated simulation.

In certain scenarios of training deep neural network [76], the relationship between the decision

variables and the objective function is too complicated to derive explicit form of the gradient.

Further, in bandit optimization [2, 37], a player tries to minimize a sequence of loss functions

generated by an adversary, and such loss function can only be observed at those points in

which it is realized. In these scenarios, one has to utilize techniques from derivative-free

optimization, or optimization using zeroth-order information [127, 27].

In this chapter we propose zeroth-order primal-dual based algorithms for distributed optimiza-

tion problems over different network topologies. For MNet, we design an algorithm capable

of dealing with nonconvexity and zeroth-order information simultaneously. It is shown that

the proposed algorithm converges to the set of stationary solutions of problem (1.6) (with

nonconvex but smooth fi’s), in a globally sublinear manner. Further, for SNet we propose

a stochastic primal-dual based method, which is able to further utilize the special structure

of the network (i.e., the presence of the central controller) and deal with problem (1.7) with

nonsmooth objective in zeroth-order setup. Theoretically, we show that this algorithm also

converges to the set of stationary solutions in a globally sublinearly manner.
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To the best of our knowledge, these algorithms are the first ones for distributed nonconvex

optimization that are capable of utilizing zeroth-order information, while possessing global

convergence rate guarantees.
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CHAPTER 2. PROXIMAL PIMAL-DUAL ALGORITHM FOR

DISTRIBUTED NONCONVEX OPTIMIZATION

Abstract

In this paper we consider nonconvex optimization and learning over a network of distributed

nodes. We develop a Proximal Primal-Dual Algorithm (Prox-PDA), which enables the network

nodes to distributedly and collectively compute the set of first-order stationary solutions in a

global sublinear manner [with a rate of O(1/r), where r is the iteration counter]. To the best of our

knowledge, this is the first algorithm that enables distributed nonconvex optimization with global

rate guarantees. Our numerical experiments also demonstrate the effectiveness of the proposed

algorithm.

2.1 Introduction

We consider the following optimization problem

min
z∈RM

g(z) :=
N∑
i=1

fi(z), (2.1)

where each fi, i ∈ {1, · · · , N} := [N ] is a nonconvex cost function, and we assume that it is smooth

and has Lipschitz continuous gradient.

Such finite sum problem is of central importance in machine learning and signal/information

processing [23, 47]. In particular, in the class of empirical risk minimization (ERM) problem, z

represents the feature vectors to be learned, and each fi can represent: 1) a mini-batch of (possibly

nonconvex) loss functions modeling data fidelity [7]; 2) nonconvex activation functions of neural

networks [3]; 3) nonconvex utility functions used in applications such as resource allocation [18].

Recently, a number of works in machine learning community have been focused on designing fast
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centralized algorithms for solving problem (5.1); e.g., SAG [31], SAGA [118], and SVRG [71] for

convex problems, and [111, 3, 57] for nonconvex problems.

In this work, we are interested in designing algorithms that solve problem (5.1) in a distributed

manner. In particular, we focus on the scenario where each fi (or equivalently, each subset of

data points in the ERM problem) is available locally at a given computing node i ∈ [N ], and the

nodes are connected via a network. Clearly, such distributed optimization and learning scenario

is important for machine learning, because in contemporary applications such as document topic

modeling and/or social network data analysis, oftentimes data corporas are stored in geographically

distributed locations without any central controller managing the entire network of nodes; see

[38, 140, 108, 11].

Related Works. Distributed convex optimization and learning has been thoroughly investigated

in the literature. In [100], the authors propose a distributed subgradient algorithm (DSG), which

allows the agents to jointly optimize problem (5.1). Subsequently, many variants of DSG have been

proposed, either with special assumptions on the underlying graph, or having additional structures

of the problem; see, e.g., [88, 89, 99]. The rate of convergence for DSG is O(log(r)/
√
r) under

certain diminishing stepsize rules. Recently, a number of algorithms such as the exact first-order

algorithm (EXTRA) [122] and DLM [85] have been proposed, which use constant stepsize and

achieve faster O(1/r) rate for convex problems. Recent works that applies distributed optimization

algorithms to machine learning applications include [115, 11, 116].

On the other hand, there has been little work for distributed optimization and learning when the

objective function involves nonconvex problems. A dual subgradient method has been proposed

in [148], which relaxes the exact consensus constraint. In [17] a stochastic projection algorithm

using diminishing stepsizes has been proposed. An ADMM based algorithm has been presented in

[63] for a special type of problem called global consensus, where all distributed nodes are directly

connected to a central controller. Utilizing certain convexification decomposition technique the

authors of [92] designed an algorithm named NEXT, which converges to the set of stationary

solutions when using diminishing stepsizes. To the best of our knowledge, no distributed algorithm



www.manaraa.com

12

is able to guarantee global convergence rate for problem (5.1), in the scenario where the nodes are

distributed in connected a network.

Our Contributions. In this work, we propose a proximal primal-dual algorithm (Prox-PDA) for

problem (5.1) over an undirected connected network. We show that Prox-PDA converges to the

set of stationary solutions of problem (5.1) (satisfying the first-order optimality condition) in a

globally sublinear manner. We also show that Prox-PDA can be extended in several directions to

improve its practical performance. To the best of our knowledge, this is the first algorithm that is

capable of achieving global sublinear convergence rate for distributed non-convex optimization.

Further, our work reveals an interesting connection between the primal-dual based algorithm

Prox-PDA and the primal-only fast distributed algorithms such as EXTRA [122]. Such new in-

sight into the connection between primal-dual and primal-only algorithms could be of independent

interest for the optimization community. Finally, we generalize the theory for Prox-PDA based

algorithms to a challenging distributed matrix factorization problem.

System Model

Define a graph G := {V, E}, where V and E are the node and edge sets; Let |V| = N and |E| = E.

Each node v ∈ V represents an agent in the network, and each edge eij = (i, j) ∈ E indicates that

node i and j are neighbors; see Fig.5.1(Left). Assume that each node i can only communicate with

its direct neighbors, defined as Ni := {j | (i, j) ∈ V}, with |Ni| = di. The distributed version of

problem (5.1) is given as below

min
xi∈RM

f(x) :=

N∑
i=1

fi(xi), s.t. xi = xj , ∀ (i, j) ∈ E . (2.2)

Clearly the above problem is equivalent to (5.1) as long as G is connected. For notational simplicity,

define x := {xi} ∈ RNM×1, and Q := N ×M .

To proceed, let us introduce a few useful quantities related to graph G.

• The incidence matrix Ã ∈ RE×N is a matrix with entires Ã(k, i) = 1 and Ã(k, j) = −1 if

k = (i, j) ∈ E with j > i, and all the rest of the entries being zero. For example, for the network
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Figure 2.2: (Left) An undirected Connected Network, (Right) Incidence Matrix.

in Fig.5.1 (Left); the incidence matrix is given in Fig.5.1 (Right). Define the extended incidence

matrix as

A := Ã⊗ IM ∈ REM×Q. (2.3)

• The Degree matrix D̃ ∈ RN×N is given by D̃ := diag[d1, · · · , dN ]; Let D := D̃ ⊗ IM ∈ RQ×Q.

• The signed and the signless Laplacian matrices (denoted as L− and L+ respectively), are given

below

L− := A>A ∈ RQ×Q, L+ := 2D −A>A ∈ RQ×Q. (2.4)

Using the above notations, one can verify that problem (5.10) can be written in the following

compact form:

min
x∈RQ

f(x), s.t. Ax = 0. (2.5)

2.2 The Prox-PDA Algorithm

The proposed algorithm builds upon the classical augmented Lagrangian (AL) method [14, 107].

Let us define the AL function for (5.13) as

Lβ(x, µ) = f(x) + 〈µ,Ax〉+
β

2
‖Ax‖2 (2.6)

where µ ∈ RQ is the dual variable; β > 0 is a penalty parameter. Let B ∈ RQ×Q be some

arbitrary matrix to be determined shortly. Then the proposed algorithm is given in the table below

(Algorithm 1).

In Prox-PDA, the primal iteration (4.12a) minimizes the augmented Lagrangian plus a proxi-

mal term β
2 ‖x − x

r‖2
BTB

. We emphasize that the proximal term is critical in both the algorithm
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Algorithm 1 The Prox-PDA Algorithm

1: At iteration 0, initialize µ0 = 0 and x0 ∈ RQ.

2: At each iteration r + 1, update variables by:

xr+1 = arg min
x∈RQ

f(x) + 〈µr, Ax〉+
β

2
‖Ax‖2 +

β

2
‖x− xr‖2BTB; (2.7a)

µr+1 = µr + βAxr+1. (2.7b)

implementation and the analysis. It is used to ensure the following key properties:

(1). The primal problem is strongly convex;

(2). The primal problem is decomposable over different network nodes, hence distributedly imple-

mentable.

To see the first point, suppose BTB is chosen such that ATA + BTB � IQ, and that f(x) has

Lipschitz gradient. Then by a result in [150][Theorem 2.1], we know that there exists β > 0 large

enough such that the objective function of (4.12a) is strongly convex.

To see the second point, Let B := |A|, where the absolute value is taken for each component of

A. It can be verified that BTB = L+, and step (4.12a) becomes

xr+1 = arg min
x

N∑
i=1

fi(xi) + 〈µr, Ax〉+
β

2
xTL−x+

β

2
(x− xr)TL+(x− xr)

= arg min
x

N∑
i=1

fi(xi) + 〈µr, Ax〉+ βxTDx− βxTL+xr

Clearly this problem is separable over the nodes, therefore it can be solved completely distributedly.

2.3 The Convergence Analysis

In this section we provide convergence analysis for Algorithm 1. The key in the analysis is the

construction of a novel potential function, which decreases at every iteration of the algorithm. We

first state our main assumptions below.

[A1.] The function f(x) is differentiable and has Lipschitz continuous gradient, i.e.,
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‖∇f(x)−∇f(x)‖ ≤ L‖x− y‖, ∀ x, y ∈ RQ.

Further assume that ATA+BTB � IQ.

[A2.] There exists a constant δ > 0 such that

∃f > −∞, s.t. f(x) +
δ

2
‖Ax‖2 ≥ f, ∀ x ∈ RQ.

Without loss of generality we will assume that f = 0. Below we provide a few nonconvex smooth

functions that satisfy our assumptions, all of which are commonly used as activation functions for

neural networks.

• The sigmoid function. The sigmoid function is given by

sigmoid(x) =
1

1 + e−x
∈ [−1, 1].

Clearly it satisfies [A2]. We have sigmoid′(x) = e−x

(1+e−x)2
∈ [0, 1/4], and such boundedness

of the first order derivative implies that [A1] is true (by applying the first-order mean value

theorem).

• The arctan function. Note that arctan(x) ∈ [−1, 1], so it clearly satisfies [A2]. arctan′(x) =

1
x2+1

∈ [0, 1] so it is bounded, which implies that [A1] is true.

• The tanh function. Note that we have

tanh(x) ∈ [−1, 1], tanh′(x) = 1− tanh(x)2 ∈ [0, 1].

Therefore the function satisfies [A1] – [A2].

• The logit function as follows

2logit(x) =
2ex

ex + 1
= 1 + tanh(x/2).

• The log(1 +x2) function. This function has applications in structured matrix factorization

[66]. The function itself is obviously nonconvex and lower bounded. Its first order derivative

is log′(1 + x2) = 2x
1+x2

and it is also bounded.



www.manaraa.com

16

• The quadratic function xTQx. Suppose that Q is a symmetric matrix but not necessarily

positive semidefinite, and suppose that xTQx is strongly convex in the null space of ATA.

Then it can be shown that there exists a δ large enough such that [A2] is true; see e.g.,

[144, 14].

Other relevant functions include sin(x), sinc(x), cos(x) and so on.

The Analysis Steps

Below we provide the analysis of Prox-PDA. First we provide a bound on the size of the

constraint violation using a quantity related to the primal iterates. Let σmin denotes the smallest

non-zero eigenvalue of ATA, and we define wr := (xr+1−xr)− (xr−xr−1) for notational simplicity.

We have the following result.

Lemma 1 Suppose Assumptions [A1] and [A2] are satisfied. Then the following is true for Prox-

PDA.

1

β
‖µr+1 − µr‖2 ≤ 2L2

βσmin

∥∥xr − xr+1
∥∥2

+
2β

σmin
‖BTBwr‖2. (2.8)

Then we bound the descent of the AL function.

Lemma 2 Suppose Assumptions [A1] and [A2] are satisfied. Then the following is true for Algo-

rithm 1

Lβ(xr+1, µr+1)− Lβ(xr, µr) ≤ −
(
β − L

2
− 2L2

βσmin

)
‖xr+1 − xr‖2 +

2β‖BTB‖
σmin

‖wr‖2BTB . (2.9)

A key observation from Lemma 2 is that no matter how large β is, the rhs of (2.9) cannot be

made negative. This observation suggests that the augmented Lagrangian alone cannot serve as

the potential function for Prox-PDA. In search for an appropriate potential function, we need a

new object that is decreasing in the order of β ‖wr‖2BTB.

The following lemma shows that the descent of the sum of the constraint violation and the

proximal term has the desired property.
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Lemma 3 Suppose Assumption [A1] is satisfied. Then the following statement is true for the

constraint violation and successive difference of the variable xr+1

β

2

(
‖Axr+1‖2 + ‖xr+1 − xr‖2BTB

)
≤ L‖xr+1 − xr‖2 +

β

2

(
‖Axr‖2 + ‖xr − xr−1‖2BTB

)
− β

2

(
‖wr‖2BTB + ‖A(xr+1 − xr)‖2

)
. (2.10)

It is interesting to observe that the new object, β/2
(
‖Axr+1‖2 + ‖xr+1 − xr‖2

BTB

)
, increases in

L‖xr+1 − xr‖2 and decreases in β/2‖wr‖2
BTB

, while the AL behaves in an opposite manner (cf.

Lemma 2). More importantly, in our new object, the constant in front of ‖xr+1−xr‖2 is independent

of β. Although neither of these two objects decreases by itself, quite surprisingly, a proper conic

combination of these two objects decreases at every iteration of Prox-PDA. To precisely state the

claim, let us define the potential function for Algorithm 1 as

Pc,β(xr+1, xr, µr+1) := Lβ(xr+1, µr+1) +
cβ

2

(
‖Axr+1‖2 + ‖xr+1 − xr‖2BTB

)
(2.11)

where c > 0 is some constant to be determined later. We have the following result.

Lemma 4 Suppose the assumptions made in Lemmas 23 – 3 are satisfied. Then we have the

following

Pc,β(xr+1, xr, µr+1) ≤ Pc,β(xr, xr−1, µr)−
(
β − L

2
− 2L2

βσmin
− cL

)
‖xr+1 − xr‖2

−
(
cβ

2
− 2β‖BTB‖F

σmin

)
‖wr‖2BTB . (2.12)

Below we derive the precise bounds for c and β. First, a sufficient condition for c is given below

(note, that δ > 0 is defined in Assumption [A2])

c ≥ max

{
δ

L
,
4‖BTB‖F
σmin

}
. (2.13)

Here the term“δ/L” in the max operator is needed for later use. Importantly, such bound on c is

independent of β. Second, for any given c, we need β to satisfy

β − L
2
− 2L2

βσmin
− cL > 0,
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which further implies the following lower bond for the penalty term β, which depends on Lipschitz

constant L

β >
L

2

2c+ 1 +

√
(2c+ 1)2 +

16L2

σmin

 . (2.14)

Clearly combining the bounds for β and c we see that β > δ. We conclude that if both (2.13) and

(2.14) are satisfied, then the potential function Pc,β(xr+1, xr, µr+1) decreases at every iteration.

Our next step shows that by using the particular choices of c and β in (2.13) and (2.14), the

constructed potential function is lower bounded.

Lemma 5 Suppose [A1] - [A2] are satisfied, and (c, β) are chosen according to (2.13) and (2.14).

Then the following statement holds true

∃ P > −∞ s.t. Pc,β(xr+1, xr, µr+1) ≥ P , ∀ r > 0.

Now we are ready to present the main result of this section. To this end, define Q(xr+1, µr) as the

optimality gap of problem (5.13), given by

Q(xr+1, µr) := ‖∇xLβ(xr+1, µr)‖2 + ‖Axr+1‖2. (2.15)

It is easy to see that Q(xr+1, µr) → 0 implies that any limit point (x∗, µ∗), if it exists, is a KKT

point of (5.13) that satisfies the following conditions

0 = ∇f(x∗) +ATµ∗, Ax∗ = 0. (2.16)

In the following we show that the gap Q(·) not only decreases to zero, but does so in a sublinear

manner.

Theorem 1 Suppose Assumption A and the conditions (2.13) and (2.14) are satisfied. Then we

have:

• (Eventual Consensus). We have

lim
r→∞

µr+1 − µr → 0, lim
r→∞

Axr → 0.
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• (Convergence to Stationary Points). Every limit point of the iterates {xr, µr} generated by

Algorithm 1 converges to a KKT point of problem (5.13). Further, Q(xr+1, µr)→ 0.

• (Sublinear Convergence Rate). For any given ϕ > 0, let us define T to be the first time that

the optimality gap reaches below ϕ, i.e.,

T := arg min
r
Q(xr+1, µr) ≤ ϕ.

Then for some ν > 0, we have ϕ ≤ ν
T−1 . That is, the optimality gap Q(xr+1, µr) converges sublin-

early.

2.4 Variants of Prox-PDA

In this section, we discuss two important extensions of the Prox-PDA, one allows the x-problem

(4.12a) to be solved inexactly, while the second allows the use of increasing penalty parameter ρ.

In many practical applications, exactly minimizing the augmented Lagrangian may not be easy.

Therefore, we propose the proximal gradient primal-dual algorithm (Prox-GPDA), whose main

steps are given below

xr+1 = arg min
x∈RQ

〈∇f(xr), x− xr〉+ 〈µr, Ax〉+
β

2
‖Ax‖2 +

β

2
‖x− xr‖2BTB; (2.17)

µr+1 = µr + βAxr+1. (2.18)

The analysis of this algorithm follows similar steps as that for Prox-PDA. The major difference is

that there are several places in which we need to bound the term ‖∇f(xr−1)−∇f(xr)‖ instead of

‖∇f(xr+1) −∇f(xr)‖. Moreover, the potential function is no longer decreasing at each iteration.

For detailed discussion see the supplementary material.

Our second variant do not require to explicitly compute the bound for β given in (2.14). In

practice, one may prefer to start with a small penalty parameter and gradually increase it. The

main steps are as bellow

xr+1 = arg min
x∈RQ

f(x) + 〈µr, Ax〉+
βr+1

2
‖Ax‖2 +

βr+1

2
‖x− xr‖2BTB; (2.19)

µr+1 = µr + βr+1Axr+1. (2.20)
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Note that one can also replace f(x) in (2.19) by 〈∇f(xr), x − xr〉 to obtain a similar variant

for Prox-GPDA denoted by Prox-GPDA-IP. The key feature of this algorithm is that the primal

proximal parameter, the primal penalty parameter, as well as the dual stepsize are all iteration-

dependent. It would be challenging to achieve convergence if only a subset of these parameters

grow unboundedly.

Throughout this section we will still assume that Assumption A holds true. Further, we will

assume that βr satisfies the following conditions

1

βr
→ 0,

∞∑
r=1

1

βr
=∞, βr+1 ≥ βr,

max
r

(βr+1 − βr) < κ, for some finite κ > 0. (2.21)

Also without loss of generality we will assume that

BTB � 0, and ‖BTB‖F > 1. (2.22)

Note that this is always possible, by adding an identity matrix to BTB if necessary.

The analysis for Prox-PDA-IP is long and technical, therefore we relegate it to supplementary

material. Below we provide an outline. The key step is to construct a new potential function, given

below

Pβr+1,c(x
r+1, xr, µr+1) = Lβr+1(xr+1, µr+1) +

cβr+1βr

2
‖Axr+1‖2 +

cβr+1βr

2
‖xr − xr+1‖2BTB.

The insight here is that in order to achieve the desired descent, in the potential function the

coefficients for ‖xr+1 − xr‖2
BTB

and ‖Axr+1‖2 should be proportional to O
(
(βr)2

)
. Our proof

shows that after some finite number of iterations, the newly constructed potential function starts

to descend, and the size of the descent is proportional to the following quantity

βr+1

2
‖xr+1 − xr‖2 +

(βr)2

2
‖wr‖2. (2.23)

Combining with the fact that the potential function is lower bounded, we can conclude that

∞∑
r=1

βr+1

2
‖xr+1 − xr‖2 <∞,

∞∑
r=1

(βr)2

2
‖wr‖2 <∞.
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Using these two inequalities, we can show the desired convergence to the set of stationary solutions

of problem (5.13).

We have the following theorem regarding to the convergence of Prox-PDA-IP.

Theorem 2 Suppose Assumption A and (4.61) are satisfied. Suppose that B is selected such that

(2.22) holds true. Then the following hold for Prox-PDA-IP

• (Eventual Consensus). We have

lim
r→∞

µr+1 − µr → 0, lim
r→∞

Axr → 0, .

• (Convergence to KKT Points). Every limit point of the iterates {xr, µr} generated by Prox-

PDA-IP converges to a KKT point of problem (5.13). Further, Q(xr+1, µr)→ 0.

2.5 Connections and Discussions

In this section we present an interesting observation which established links between the so-called

EXTRA algorithm [122] (developed for distributed, but convex optimization) and the Prox-GPDA.

Specifically, the optimality condition of the x-update step (2.17) is given by

∇f(xr) +AT (µr + βAxr+1) + β(BTB(xr+1 − xr)) = 0.

Utilizing the fact that ATA = L−, BTB = L+ and L+ + L− = 2D, we have

∇f(xr) +ATµr + 2βDxr+1 − βL+xr = 0.

Subtracting the same equation evaluated at the previous iteration, we obtain

∇f(xr)−∇f(xr−1) + βL−xr + 2βD(xr+1 − xr)− βL+(xr − xr−1) = 0,

where we have used the fact that AT (µr − µr−1) = βATAxr = βL−xr. Rearranging terms, we

have

xr+1 = xr − 1

2β
D−1

(
∇f(xr)−∇f(xr−1)

)
+

1

2
D−1(L+ − L−)xr − 1

2
D−1L+xr−1

= xr − 1

2β
D−1

(
∇f(xr)−∇f(xr−1)

)
+Wxr − 1

2
(I +W )xr−1 (2.24)



www.manaraa.com

22

where in the last equality we have defined the weight matrix W := 1
2D
−1(L+ − L−), which is a

row stochastic matrix.

Iteration (2.24) has the same form as the EXTRA algorithm given in [122], therefore we can

conclude that EXTRA is a special case of Prox-GPDA. Moreover, by appealing to our analysis in

Section 2.4, it readily follows that iteration (2.24) works for the nonconvex distributed optimization

problem as well, as long as the parameter β is selected appropriately.

We remark that each node i can distributedly implement iteration (2.24) by performing the

following

xr+1
i = xri −

1

2βdi

(
∇fi(xri )−∇fi(xr−1

i )
)

+
∑

j∈N (i)

1

di
xrj −

1

2

 ∑
j∈N (i)

1

di
xr−1
j + xr−1

i

 (2.25)

Clearly, at iteration r+1, besides the local gradient information, node i only needs the aggregated

information from its neighbors,
∑

j∈N (i) x
r
j . Therefore the algorithm is distributedly implementable.

2.6 Distributed Matrix Factorization

In this section we study a variant of the Prox-PDA/Prox-PDA-IP for the following distributed

matrix factorization problem [86]

min
X,Y

1

2
‖XY − Z‖2F + η‖X‖2F + h(Y ) =

N∑
i=1

1

2
‖Xyi − zi‖2 + γ‖X‖2F + hi(yi), (2.26)

s.t. ‖yi‖2 ≤ τ, ∀ i

where X ∈ RM×K , Y ∈ RK×N ; for each i, yi ∈ RK consists of one column of Y ; Z ∈ RM×N

is some known matrix; h(Y ) :=
∑N

i=1 hi(yi) is some convex but possibly nonsmooth penalization

term; η > 0 is some given constant; for notation simplicity we have defined γ := 1/Nη. It is easy

to extend the above formulation to the case where Y and Z both have NP columns, and each yi

and zi consists of P columns of Y and Z respectively. For notational simplicity, in our following

discussion we only consider the vector case as given in (2.26).
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We assume that h(Y ) is lower bounded over dom (h). One application of problem (2.26) is the

distributed sparse dictionary learning problem where X is the dictionary to be learned, each zi is a

training data sample, and each yi is the sparse coefficient corresponding to the particular training

sample zi. The constraint ‖yi‖2 ≤ τ simply says that the size of the coefficient must be bounded.

Consider a distributed scenario where N agents form a graph {V, E}, each having a column of

Y . We reformulate problem (2.26) as

min
{Xi},{yi}

N∑
i=1

(
1

2
‖Xiyi − zi‖2 + hi(yi) + γ‖Xi‖2F

)
s.t. ‖yi‖2 ≤ τ, ∀ i Xi = Xj , ∀ (i, j) ∈ E .

Let us stack all the variables Xi, and define X := [X1;X2; · · · ;XN ] ∈ RNM×K . Define the block

signed incidence matrix as A = Ã⊗ IM ∈ REM×NM , where A is the standard graph incidence ma-

trix. Define the block signless incidence matrix B ∈ REM×NM similarly. If the graph is connected,

then the condition AX = 0 implies network-wide consensus. We formulate the distributed matrix

factorization problem as

min
{Xi},{yi}

f(X, Y ) + h(Y ) :=
N∑
i=1

(
1

2
‖Xiyi − zi‖2 + γ‖Xi‖2F + hi(yi)

)
s.t. ‖yi‖2 ≤ τ, ∀ i AX = 0. (2.27)

Clearly the above problem does not satisfy Assumption A, because the objective function is not

smooth, and neither ∇Xf(X, Y ) nor ∇Y f(X, Y ) is Lipschitz continuous. The latter fact poses

significant difficulty in algorithm development and analysis.

Define the block-signed/signless Laplacians as

L− = ATA, L+ = BTB. (2.28)

The AL function for the above problem is given by

Lβ(X, Y,Ω) =

N∑
i=1

(
1

2
‖Xiyi − zi‖2 + γ‖Xi‖2F + hi(yi)

)
+ 〈Ω,AX〉+

β

2
〈AX,AX〉, (2.29)
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where Ω := {Ωe} ∈ REM×K is the matrix of the dual variable, with Ωe ∈ RM×K being the dual

variable for the consensus constraint on link e, i.e, Xi = Xj , e = (i, j).

Let us generalize Algorithm 1 for distributed matrix factorization given in Algorithm 2. In Al-

Algorithm 2 Prox-PDA for Distr. Matrix Factorization

1: At iteration 0, initialize Ω0 = 0, and X0, y0

2: At each iteration r + 1, update variables by:

θri = ‖Xr
i y

r
i − zi‖2, ∀ i; (2.30a)

yr+1
i = arg min

‖yi‖2≤τ

1

2
‖Xr

i yi − zi‖2 + hi(yi) +
θri
2
‖yi − yri ‖2, ∀ i; (2.30b)

Xr+1 = arg min
X

f(X, Y r+1) + 〈Ωr,AX〉+
β

2
〈AX,AX〉 (2.30c)

+
β

2
〈B(X −Xr),B(X −Xr)〉;

Ωr+1 = Ωr + βAXr+1. (2.30d)

gorithm 2 we have introduced a sequence {θri ≥ 0} which measures the size of the local factorization

error. We note that including the proximal term
θri
2 ‖yi− y

r
i ‖2 is the key to achieve convergence for

Algorithm 2. Again one should note that β
2 〈AX,AX〉+ β

2 〈B(X −Xr),B(X −Xr)〉 is strongly

convex in X. Let us comment on the distributed implementation of the algorithm. First note

that the y subproblem (2.30b) is naturally distributed to each node, that is, only local informa-

tion is needed to perform the update. Second, the X subproblem (2.30c) can also be decomposed

into N subproblems, one for each node. To be more precise, let us examine the terms in (2.30c)

one by one. First, the term f(X, Y r+1) =
∑N

i=1

(
1
2‖Xiy

r+1
i − zi‖2 + hi(yi) + γ‖Xi‖2F

)
, hence it is

decomposable. Second, the term 〈Ωr,AX〉 can be expressed as

〈Ωr,AX〉 =

N∑
i=1

∑
e∈U(i)

〈Ωr
e, Xi〉 −

∑
e∈H(i)

〈Ωr
e, Xi〉
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where the sets U(i) and H(i) are defined as U(i) := {e | e = (i, j) ∈ E , i ≥ j} and H(i) := {e |

e = (i, j) ∈ E , j ≥ i}. Similarly, we have

〈BXr,BX〉 =
N∑
i=1

〈
Xi, diX

r
i +

∑
j∈N(i)

Xr
j

〉

β

2
(〈AX,AX〉+ 〈BX,BX〉) = β〈DX,X〉 = β

N∑
i=1

di‖Xi‖2F

where D := D̃ ⊗ IM ∈ RNM×NM with D̃ being the degree matrix. It is easy to see that the X

subproblem (2.30c) is separable over the distributed agents.

Finally, one can verify that the Ω update step (2.30d) can be implemented by each edge e ∈ E

as follows

Ωr+1
e = Ωr

e + β
(
Xr+1
i −Xr+1

j

)
, e = (i, j), i ≥ j.

To show convergence rate of the algorithm, we need the following definition

Q(Xr+1, Y r+1,Ωr) := β‖AXr+1‖2 + ‖[Zr+1
1 ;Zr+1

2 ]‖2,

where we have defined

Zr+1
1 := ∇XLβ(Xr+1, Y r+1,Ωr);

Zr+1
2 := Y r+1 − proxh+ι(Y)

[
Y r+1 −∇Y

(
Lβ(Xr+1, Y r+1,Ωr)− h(Y )

)]
.

In the above expression, the prox operator for a convex lower semi-continuous function p(·) is given

by

proxp(c) = arg min
z

p(z) +
1

2
‖z − c‖2. (2.31)

We have also used Y :=
⋃
i

{
‖yi‖2 ≤ τ

}
to denote the feasible set of Y , and used ι(Y) to denote the

indicator function of such set. Similarly as in Section 5.2.3, we can show that Q(Xr+1, Y r+1,Ωr)→

0 implies that every limit point of (Xr+1, Y r+1,Ωr) is a KKT point of problem (2.27).

Next we present the main convergence analysis for Algorithm 2. The proof is long and technical,

therefore we relegate it to supplementary material.
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Theorem 3 Consider using Algorithm 2 to solve the distributed matrix factorization problem

(2.27). Suppose that h(Y ) is lower bounded over dom h(x), and that the penalty parameter β,

together with two positive constants c and d, satisfies the following conditions

β + 2γ

2
− 8(τ2 + 4γ2)

βσmin
− cd

2
> 0,

1

2
− 8

σminβ
− c

d
> 0,

1

2
− 8τ

σminβ
− cτ

d
> 0,

cβ

2
− 2β‖BTB‖

σmin
> 0.

(2.32)

Then in the limit, consensus will be achieved, i.e.,

lim
r→∞

‖Xr
i −Xr

j ‖ = 0, ∀ (i, j) ∈ E .

Further, the sequences {Xr+1} and {Ωr+1} are both bounded, and every limit point generated

by Algorithm 2 is a KKT point of problem (2.26).

Additionally, Algorithm 2 converges sublinearly. Specifically, for any given ϕ > 0, define T to

be the first time that the optimality gap reaches below ϕ, i.e.,

T := arg min
r

Q(Xr+1, Y r+1,Ωr) ≤ ϕ.

Then for some constant ν > 0 we have ϕ ≤ ν
T−1 .

We can see that it is always possible to find the tuple {β, c, d > 0} that satisfies (2.32): c can be

solely determined by the last inequality; for fixed c, the constant d needs to be chosen large enough

such that 1/2− c
d > 0 and 1/2− cτ

d > 0 are satisfied. After c and d are fixed, one can always choose

β large enough to satisfy the first three conditions. In practice, we typically prefer to choose β as

small as possible to improve the convergence speed. Therefore empirically one can start with (for

some small ν > 0): c = 4‖BTB‖
σmin

+ ν, d = max{4, 2cτ}, and then gradually increase d to find an

appropriate β that satisfies the first three conditions.

We remark that Algorithm 2 can be extended to the case with increasing penalty. Due to the

space limitation we omit the details here.
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Figure 2.3: Results for the matrix factorization problem.
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Figure 2.4: Results for the matrix factorization problem.

2.7 Numerical Results

In this section, we demonstrate the performance of the proposed algorithms. All experiments

are performed in Matlab (2016b) on a laptop with an Intel Core(TM) i5-4690 CPU (3.50 GHz) and

8GB RAM running Windows 7.

2.7.1 Distributed Binary Classification

In this subsection, we study the problem of binary classification using nonconvex regularizers in

the mini-bach setup i.e. each node stores b (batch size) data points, and each component function

is given by

fi(xi) =
1

Nb

[ b∑
j=1

log(1 + exp(−yjxTi vj)) +

M∑
k=1

λαx2
i,k

1 + αx2
i,k

]
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where vi ∈ RM and yi ∈ {1,−1} are the feature vector and the label for the ith date point [7].

We use the parameter settings of λ = 0.001, α = 1 and M = 10. We randomly generated 100, 000

data points and distribute them into N = 20 nodes (i.e. b = 5000). We use the optimality gap

(opt-gap) and constraint violation (con-vio), displayed below, to measure the quality of the solution

generated by different algorithms:

opt-gap :=

∥∥∥∥ N∑
i=1

∇fi(zi)
∥∥∥∥2

+ ‖Ax‖2, con-vio = ‖Ax‖2.

We compare the the Prox-GPDA, and Prox-GPDA-IP with the distributed subgradient (DSG)

method [100] (which is only known to work for convex cases) and the Push-sum algorithm [131].

The performance of all three algorithms in terms of the consensus error and the optimality gap

(averaged over 30 problem instances) are presented in Fig. 2.3. The penalty parameter for Prox-

GPDA is chosen such that satisfies (2.14), and βr for Prox-GPDA-IP is set as 0.05 log(r), the

stepsizes of the DSG algorithm and the Push-sum algorithm are chosen as 1/0.05 log(r) and 1/r,

respectively. Note that these parameters are tuned for each algorithm to achieve the best results.

It can be observed that the Prox-GPDA with constant stepsize outperforms other algorithms. The

Push-sum algorithm does not seem to converge within 1000 iterations.

2.7.2 Distributed Matrix Factorization

In this section we consider the distributed matrix factorization problem (2.26). The training

data is constructed by randomly extracting 300 overlapping patches from the 512 × 512 image of

barbara.png, each with size 16 × 16 pixels. Each of the extracted patch is vectorized, resulting a

training data set Z of size 256×300. We consider a network of N = 10 agents, and the columns of Z

are evenly distributed among the agents (each having P = 30 columns). We compare Prox-PDA-IP

(a variant of Prox-PDA with increasing stepsize) with the EXTRA-AO algorithm proposed in [52].

Note that the EXTRA-AO is also designed for a similar distributed matrix factorization problem

and it works well in practice. However, it does not have formal convergence proof. We initialize

both algorithms with X being the 2D discrete cosine transform (DCT) matrix. We set γ = 0.05,
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τ = 105 and β = 0.001r, and the results are averaged over 10 problem instances. The stepsizes of

the EXTRA-AO is set as αAO = 0.03 and βAO = 0.002.

In Fig. 2.4, we compare the performance of the proposed Prox-PDA-IP and the EXTRA-AO

versus the number of iterations. It can be observed that our proposed algorithm converges faster

than the EXTRA-AO. We have observed that the EXTRA-AO does have reasonably good practical

performance, however it lacks formal convergence proof.

2.8 Appendix. Lemma proofs

2.8.1 Proof of Lemma 23

From the optimality condition of the x problem (4.12a) we have

∇f(xr+1) +AT (µr + βAxr+1) + βBTB(xr+1 − xr) = 0.

Applying (2.7b), we have

ATµr+1 = −∇f(xr+1)− βBTB(xr+1 − xr). (2.33)

From equation (2.7b) (µr+1 = µr +βATµr) it is clear the difference of the dual variables lies in the

column space of A. Therefore the following is true

σ
1/2
min‖µ

r+1 − µr‖ ≤ ‖AT (µr+1 − µr)‖.

This inequality combined with (2.33) implies that

‖µr+1 − µr‖ ≤ 1

σ
1/2
min

‖ − ∇f(xr+1)− βBTB(xr+1 − xr)− (−∇f(xr)− βBTB(xr − xr−1))‖

=
1

σ
1/2
min

∥∥∇f(xr)−∇f(xr+1)− βBTBwr
∥∥ .

Squaring both sides and dividing by β, we obtain the desired result. Q.E.D.

2.8.2 Proof of Lemma 2

Since f(x) has Lipschitz continuous gradient, and that ATA+BTB � I by Assumption [A1], it

is known that if β > L, then the x-problem (4.12a) is strongly convex with modulus γ := β−L > 0;
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See [150] [Theorem 2.1]. That is, we have

Lβ(x, µr) +
β

2
‖x− xr‖2BTB − (Lβ(z, µr) +

β

2
‖z − xr‖2BTB)

≥ 〈∇xLβ(z, µr) + β(BTB(z − xr)), x− z〉+
γ

2
‖x− z‖2, ∀ x, z ∈ RN , ∀ µr. (2.34)

Using this property, we have

Lβ(xr+1, µr+1)− Lβ(xr, µr)

= Lβ(xr+1, µr+1)− Lβ(xr+1, µr) + Lβ(xr+1, µr)− Lβ(xr, µr)

≤ Lβ(xr+1, µr+1)− Lβ(xr+1, µr) + Lβ(xr+1, µr) +
β

2
‖xr+1 − xr‖2BTB − Lβ(xr, µr)

(i)

≤ ‖µ
r+1 − µr‖2

β
+ 〈∇xLβ(xr+1, µr) + β(BTB(xr+1 − xr)), xr+1 − xr〉 − γ

2
‖xr+1 − xr‖2

(ii)

≤ ‖µ
r+1 − µr‖2

β
− γ

2
‖xr+1 − xr‖2

≤ 1

σmin

(
2L2

β

∥∥xr − xr+1
∥∥2

+ 2β
∥∥BTBwr

∥∥2
)
− γ

2
‖xr+1 − xr‖2

= −
(
β − L

2
− 2L2

βσmin

)
‖xr+1 − xr‖2 +

2β

σmin

∥∥BTBwr
∥∥2

(2.35)

where in (i) we have used (2.34) with the identification z = xr+1 and x = xr and the fact that

Lβ(xr+1, µr+1)− Lβ(xr+1, µr) = 〈µr+1 − µr, Axr+1〉 =
1

β
‖µr+1 − µr‖2

; in (ii) we have used the optimality condition for the x-subproblem (4.12a). The claim is proved.

Q.E.D.

2.8.3 Proof of Lemma 3

From the optimality condition of the x-subproblem (4.12a) we have

〈∇f(xr+1) +ATµr + βATAxr+1 + βBTB(xr+1 − xr), xr+1 − x〉 ≤ 0, ∀ x ∈ RQ.

If we shift r to r − 1, we get

〈∇f(xr) +ATµr−1 + βATAxr + βBTB(xr − xr−1), xr − x〉 ≤ 0, ∀ x ∈ RQ.



www.manaraa.com

31

Plugging x = xr into the first inequality and x = xr+1 into the second, adding the resulting

inequalities and utilizing the µ-update step (2.7b) we obtain

〈∇f(xr+1)−∇f(xr) +AT (µr+1 − µr) + βBTBwr, xr+1 − xr〉 ≤ 0.

Rearranging, we have

〈AT (µr+1 − µr), xr+1 − xr〉 ≤ −〈∇f(xr+1)−∇f(xr) + βBTBwr, xr+1 − xr〉. (2.36)

Let us bound the lhs and the rhs of (2.36) separately.

First the lhs of (2.36) can be expressed as

〈AT (µr+1 − µr), xr+1 − xr〉 = 〈βATAxr+1, xr+1 − xr〉

= 〈βAxr+1, Axr+1 −Axr〉

= β‖Axr+1‖2 − β〈Axr+1, Axr〉

=
β

2

(
‖Axr+1‖2 − ‖Axr‖2 + ‖A(xr+1 − xr)‖2

)
. (2.37)

Second we have the following bound for the rhs of (2.36)

− 〈∇f(xr+1)−∇f(xr) + βBTBwr, xr+1 − xr〉

≤ L‖xr+1 − xr‖2 − β〈BTBwr, xr+1 − xr〉

= L‖xr+1 − xr‖2 +
β

2

(
‖xr − xr−1‖2BTB − ‖x

r+1 − xr‖2BTB − ‖w
r‖2BTB

)
. (2.38)

Combining the above two bounds, we have

β

2

(
‖Axr+1‖2 + ‖xr+1 − xr‖2BTB

)
≤ L‖xr+1 − xr‖2 +

β

2

(
‖xr − xr−1‖2BTB + ‖Axr‖2

)
− β

2

(
‖wr‖2BTB + ‖A(xr+1 − xr)‖2

)
.

The desired claim is proved. Q.E.D.
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2.8.4 Proof of Lemma 4

Multiplying both sides of (2.10) by the constant c and then add them to (2.9), we obtain

Lβ(xr+1, µr+1) +
cβ

2

(
‖Axr+1‖2 + ‖xr+1 − xr‖2BTB

)
≤ Lβ(xr, µr) + cL‖xr+1 − xr‖2 +

cβ

2

(
‖xr − xr−1‖2BTB + ‖Axr‖2

)
−
(
β − L

2
− 2L2

βσmin

)
‖xr+1 − xr‖2 +

2β

σmin

∥∥BTBwr
∥∥2 − cβ

2

(
‖wr‖2BTB + ‖A(xr+1 − xr)‖2

)
≤ Lβ(xr, µr) +

cβ

2

(
‖xr − xr−1‖2BTB + ‖Axr‖2

)
−
(
β − L

2
− 2L2

βσmin
− cL

)
‖xr+1 − xr‖2 −

(
cβ

2
− 2β‖BTB‖F

σmin

)
‖wr‖2BTB .

The desired result is proved. Q.E.D.

2.8.5 Proof of Lemma 25

To prove this we need to utilize the boundedness assumption in [A2].

First, we can express the augmented Lagrangian function as following

Lβ(xr+1, µr+1) = f(xr+1) + 〈µr+1, Axr+1〉+
β

2
‖Axr+1‖2

= f(xr+1) +
1

β
〈µr+1, µr+1 − µr〉+

β

2
‖Axr+1‖2

= f(xr+1) +
1

2β

(
‖µr+1‖2 − ‖µr‖2 + ‖µr+1 − µr‖2

)
+
β

2
‖Axr+1‖2.

Therefore, summing over r = 1 · · · , T , we obtain

T∑
r=1

Lβ(xr+1, µr+1) =
T∑
r=1

(
f(xr+1) +

β

2
‖Axr+1‖2 +

1

2β
‖µr+1 − µr‖2

)
+

1

2β

(
‖µT+1‖2 − ‖µ1‖2

)
.

Suppose Assumption [A2] is satisfied and β is chosen according to (2.13) and (2.14), then clearly

the above sum is lower bounded since

f(x) +
β

2
‖Ax‖2 ≥ f(x) +

δ

2
‖Ax‖2 ≥ 0, ∀ x ∈ RQ.

This fact implies that the sum of the potential function is also lower bounded (note, the remaining

terms in the potential function are all nonnegative), that is

T∑
r=1

Pc,β(xr+1, xr, µr+1) > −∞, ∀ T > 0.
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Note that if c and β are chosen according to (2.13) and (2.14), then Pc,β(xr+1, xr, µr+1) is non-

increasing. Combined with the lower boundedness of the sum of the potential function, we can

conclude that the following is true

Pc,β(xr+1, xr, µr+1) > −∞, ∀ r > 0. (2.39)

This completes the proof. Q.E.D.

2.8.6 Proof of Theorm 1

First we prove part (1). Combining Lemmas 4 and 25, we conclude that ‖xr+1 − xr‖2 → 0.

Then according to (5.32), in the limit we have µr+1 → µr, or equivalently Axr → 0. That is, the

constraint violation will be satisfied in the limit.

Then we prove part (2). From the optimality condition of x-update step (4.12a) we have

∇f(xr+1) +ATµr + βAT (Axr+1) + βBTB(xr+1 − xr) = 0.

Then we argue that {µr} is a bounded sequence if ∇f(xr+1) is bounded. Indeed the fact that

‖xr+1 − xr‖2 → 0 and Axr+1 → 0 imply that both (xr+1 − xr) and Axr+1 are bounded. Then the

boundedness of µr follows from the assumption that ∇f(x) is bounded for any x ∈ RQ, and that

µr lies in the column space of A.

Then we argue that {xr} is bounded if f(x) + β
2 ‖Ax‖

2 is coercive. Note that the potential

function can be expressed as

Pc,β(xr+1, xr, µr+1) = f(xr+1) + 〈µr+1, Axr+1〉+
β

2
‖Axr+1‖2 +

cβ

2

(
‖Axr+1‖2 + ‖xr+1 − xr‖2BTB

)
= f(xr+1) +

1

2β
(‖µr+1‖2 − ‖µr‖2 + ‖µr+1 − µr‖2) +

β

2
‖Axr+1‖2

+
cβ

2

(
‖Axr+1‖2 + ‖xr+1 − xr‖2BTB

)
and by our analysis in Lemma 25 we know that it is decreasing thus upper bounded. Suppose that

{xr} is unbounded and let K denote an infinite subset of iteration index in which limr∈K x
r =∞.

Passing limit to Pc,β(xr+1, xr, µr+1) over K, and using the fact that xr+1 → xr, µr+1 → µr, we have

lim
r∈K

Pc,β(xr+1, xr, µr+1) = lim
r∈K

f(xr+1) +
cβ + β

2
‖Axr+1‖ =∞
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where the last equality comes from the coerciveness assumption. This is a contradiction to the fact

that the potential function Pc,β(xr+1, xr, µr+1) is upper bounded. This concludes the proof for the

second part of the result.

Then we prove part (3). Let K denote any converging infinite iteration index such that

{(µr, xr)}r∈K converges to the limit point (µ∗, x∗). Passing limit in K, and using the fact that

‖xr+1 − xr‖ → 0, we have

∇f(x∗) +ATµ∗ + βATAx∗ = 0.

Combined with the fact that Ax∗ = 0, we conclude that (µ∗, x∗) is indeed a stationary point of the

original problem (5.13), satisfying (5.15).

Additionally, even if the sequence {xr+1, µr+1} does not have a limit point, from part (1) we

still have ‖µr+1 − µr‖ → 0 and ‖xr − xr+1‖ → 0. Hence

lim
r→∞

∇xLβ(xr+1, µr) = lim
r→∞

∇f(xr+1)
(i)
= lim

r→∞
−βBTB(xr+1 − xr) = 0

where (i) is from the optimality condition of the x-subproblem (4.12a). Therefore we haveQ(xr+1, µr)→

0.

Finally we prove part (4). Our first step is to bound the size of the gradient of the augmented

Lagrangian. From the optimality condition of the x-problem (4.12a), we have

‖∇xLβ(xr, µr−1)‖2 = ‖∇xLβ(xr+1, µr) + βBTB(xr+1 − xr)−∇xLβ(xr, µr−1)‖2

= ‖∇f(xr+1)−∇f(xr) +AT (µr+1 − µr) + βBTB(xr+1 − xr)‖2

≤ 3L2‖xr+1 − xr‖2 + 3‖µr+1 − µr‖2‖ATA‖+ 3β2‖BTB(xr+1 − xr)‖2.

By utilizing the estimate (5.32), we see that there must exist a constant ξ > 0 such that the

following is true

Q(xr, µr−1) = ‖∇xLβ(xr, µr−1)‖2 + β‖Axr‖2 ≤ ξ
∥∥xr − xr+1

∥∥2
+ ξ

∥∥BTBwr
∥∥2
.

From the descent estimate (2.9) we see that there must exist a constant ν > 0 such that

Pc,β(xr+1, xr, µr+1)− Pc,β(xr, xr−1, µr) ≤ −ν‖xr+1 − xr‖2 − ν
∥∥BTBwr

∥∥2
.
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Matching the above two bounds, we have

Q(xr, µr−1) ≤ ν

ξ

(
Pc,β(xr, xr−1, µr)− Pc,β(xr+1, xr, µr+1)

)
.

Summing over r, and let T denote the first time that Q(xr, µr−1) reaches below ϕ, we obtain

ϕ ≤ 1

T − 1

T−1∑
r=1

Q(xr, µr−1) ≤ 1

T − 1

ν

ξ

(
Pc,β(x1, x0, µ1)− Pc,β(xT , xT−1, µT )

)
≤ 1

T − 1

ν

ξ

(
Pc,β(x1, x0, µ1)− P

)
:=

ν

T − 1
.

We conclude that the convergence in term of the optimality gap function Q(xr+1, µr) is sublinear.

Q.E.D.

2.8.7 The Analysis Outline for Prox-GPDA

First, following the derivation leading to (5.32) we obtain

1

β
‖µr+1 − µr‖2 ≤ 2L2

βσmin

∥∥xr − xr−1
∥∥2

+
2β

σmin

∥∥BTBwr
∥∥2
. (2.40)

Note that the first term is now related to the square of the difference between the previous two

iterations.

Following the proof steps in Lemma 2, the descent of the augmented Lagrangian is given by

Lβ(xr+1, µr+1)− Lβ(xr, µr)

≤ −β − L
2
‖xr+1 − xr‖2 +

2β

σmin

∥∥BTBwr
∥∥2

+
2L2

βσmin

∥∥xr − xr−1
∥∥2
. (2.41)

In the third step we have the following estimate

β

2

(
‖Axr+1‖2 + ‖xr+1 − xr‖2BTB

)
≤ L

2
‖xr−1 − xr‖2 +

L

2
‖xr+1 − xr‖2 +

β

2

(
‖xr − xr−1‖2BTB + ‖Axr‖2

)
− β

2

(
‖wr‖2BTB + ‖A(xr+1 − xr)‖2

)
. (2.42)

Note that the first two terms come from the following estimate

−〈xr+1 − xr,∇f(xr)−∇f(xr−1)〉 ≤ L

2
‖xr+1 − xr‖2 +

1

2L
‖∇f(xr)−∇f(xr−1)‖2

≤ L

2
‖xr+1 − xr‖2 +

L

2
‖xr − xr−1‖2,
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where the first inequality is the application of Young’s inequality.

In the fourth step we have the following overall descent estimate

Lβ(xr+1, µr+1) +
cβ

2

(
‖Axr+1‖2 + ‖xr+1 − xr‖2BTB

)
≤ Lβ(xr, µr) +

cβ

2

(
‖xr − xr−1‖2BTB + ‖Axr‖2

)
−
(
β − L

2
− cL

2

)
‖xr+1 − xr‖2

+

(
2L2

βσmin
+
cL

2

)
‖xr−1 − xr‖2 −

(
cβ

2
− 2β‖BTB‖

σmin

)
‖wr‖2BTB . (2.43)

Note that there is a slight difference between this descent estimate and our previous estimate

(4.28), because now there is a positive term in the rhs, which involves ‖xr − xr−1‖2. Therefore the

potential function is difficult to decrease by itself. Fortunately, such extra term can be bounded by

the descent of the previous iteration. We can take the summation over all the iterations and obtain

Lβ(xT+1, µT+1) +
cβ

2

(
‖AxT+1‖2 + ‖xT+1 − xT ‖2BTB

)
≤ Lβ(x1, µ1) +

cβ

2

(
‖x1 − x0‖2BTB + ‖Ax1‖2

)
+

(
2L2

βσmin
+ cL

)
‖x0 − x1‖2

−
T−1∑
r=1

(
β − L

2
− 2L2

βσmin
− cL

)
‖xr+1 − xr‖2 −

T∑
r=1

(
cβ

2
− 2β‖BTB‖

σmin

)
‖wr‖2BTB .

Clearly as long as the potential function is lower bounded, we have xr+1 → xr and xr+1 − xr →

xr − xr−1. The rest of the proof follows similar steps leading to Theorem 1, hence is omitted.

2.8.8 Proof of Convergence for Prox-PDA-IP

In this part we present the convergence analysis for Prox-PDA-IP algorithm which main steps

are given in (2.19) and (2.20). Our analysis consists of a series of steps.

Step 1. Our first step is again to bound the size of the successive difference of {µr}. To this end,

write down the optimality condition for the x-update (2.19) as

ATµr+1 = −∇f(xr+1)− βr+1BTB(xr+1 − xr). (2.44)

Subtracting the previous iteration, we obtain

AT (µr+1 − µr) = −(∇f(xr+1)−∇f(xr))− βrBTB (wr)− (βr+1 − βr)BTB(xr+1 − xr). (2.45)
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Therefore, using the fact that µr+1 − µr ∈ col(A), we have

1

βr+1
‖µr+1 − µr‖2

≤ 3

βr+1σmin

(
L2 + (βr+1 − βr)2‖BTB‖

)
‖xr+1 − xr‖2 +

3(βr)2

βr+1σmin

∥∥BTB (wr)
∥∥2
. (2.46)

Also from the optimality condition we have the following relation

xr+1 = xr − 1

βr+1
(BTB)−1

(
∇f(xr+1) +ATµr+1

)
:= xr − 1

βr+1
vr+1, (2.47)

where we have defined the primal update direction vr+1 as

vr+1 = (BTB)−1
(
∇f(xr+1) +ATµr+1

)
.

Step 2. In the second step we analyze the descent of the augmented Lagrangian. We have the

following estimate

Lβr+1(xr+1, µr+1)− Lβr(xr, µr)

= Lβr+1(xr+1, µr+1)− Lβr+1(xr+1, µr) + Lβr+1(xr+1, µr)− Lβr+1(xr, µr) + Lβr+1(xr, µr)− Lβr(xr, µr)
(i)

≤ 1

βr+1
‖µr+1 − µr‖2 +

βr+1 − βr

2(βr)2
‖µr − µr−1‖2 − βr+1 − L

2
‖xr+1 − xr‖2

(ii)

≤ −
(
βr+1 − L

2
− 3

βr+1σmin

(
L2 + (βr+1 − βr)2‖BTB‖

))
‖xr+1 − xr‖2 +

βr+1 − βr

2(βr)2
‖µr − µr−1‖2

+
3(βr)2

βr+1σmin

∥∥BTB (wr)
∥∥2

(2.48)

where in (i) we have used the optimality of the x-subproblem (cf. the derivation in (5.66)), and

the fact that

Lβr+1(xr, µr)− Lβr(xr, µr) =
βr+1 − βr

2
‖Axr‖2 =

βr+1 − βr

2(βr)2
‖µr − µr−1‖2; (2.49)

in (ii) we have applied (2.46).

Step 3. In the third step, we construct the remaining part of the potential function. We have the

following two inequalities from the optimality condition of the x-update (2.19)

〈
∇f(xr+1) +ATµr+1 + βr+1BTB(xr+1 − xr), xr+1 − x

〉
≤ 0, ∀ x ∈ RQ〈

∇f(xr) +ATµr + βrBTB(xr − xr−1), xr − x
〉
≤ 0, ∀ x ∈ RQ.
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Plugging x = xr and x = xr+1 to these two equations and adding them together, we obtain

〈AT (µr+1 − µr), xr+1 − xr〉

≤ −〈∇f(xr+1)−∇f(xr), xr+1 − xr〉 − 〈BTB(βr+1(xr+1 − xr)− βr(xr − xr−1)), xr+1 − xr〉.

The lhs of the above inequality can be expressed as

〈AT (µr+1 − µr), xr+1 − xr〉

=
βr+1

2

(
‖Axr+1‖2 − ‖Axr‖2 + ‖A(xr+1 − xr)‖2

)
=
βr+1

2
‖Axr+1‖2 − βr

2
‖Axr‖2 +

βr+1

2
‖A(xr+1 − xr)‖2 +

βr − βr+1

2
‖Axr‖2,

while its rhs can be bounded as

− 〈∇f(xr+1)−∇f(xr), xr+1 − xr〉 − 〈BTB(βr+1(xr+1 − xr)− βr(xr − xr−1)), xr+1 − xr〉

≤ L‖xr+1 − xr‖2 − (βr+1 − βr)‖xr+1 − xr‖2BTB

+
βr

2

(
‖xr − xr−1‖2BTB − ‖x

r − xr+1‖2BTB − ‖w
r‖2BTB

)
= L‖xr+1 − xr‖2 − βr+1 − βr

2
‖xr+1 − xr‖2BTB

+
βr

2
‖xr − xr−1‖2BTB −

βr+1

2
‖xr − xr+1‖2BTB −

βr

2
‖wr‖2BTB

(4.61)

≤ L‖xr+1 − xr‖2 +
βr

2
‖xr − xr−1‖2BTB −

βr+1

2
‖xr − xr+1‖2BTB −

βr

2
‖wr‖2BTB.

Therefore, combining the above three inequalities we obtain

βr+1

2
‖Axr+1‖2 +

βr+1

2
‖xr − xr+1‖2BTB

≤ βr

2
‖Axr‖2 +

βr

2
‖xr − xr−1‖2BTB +

βr+1 − βr

2(βr)2
‖µr−1 − µr‖2 + L‖xr+1 − xr‖2 − βr

2
‖wr‖2BTB.
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Multiplying both sides by βr, we obtain

βr+1βr

2
‖Axr+1‖2 +

βr+1βr

2
‖xr − xr+1‖2BTB

≤ βrβr−1

2
‖Axr‖2 +

βrβr−1

2
‖xr − xr−1‖2BTB +

βr+1 − βr

2βr
‖µr−1 − µr‖2 + βrL‖xr+1 − xr‖2

− (βr)2

2
‖wr‖2BTB +

βr(βr − βr−1)

2
‖Axr‖2 +

βr(βr − βr−1)

2
‖xr − xr−1‖2BTB

=
βrβr−1

2
‖Axr‖2 +

βrβr−1

2
‖xr − xr−1‖2BTB +

βr+1 − βr−1

2βr
‖µr−1 − µr‖2 + βrL‖xr+1 − xr‖2

− (βr)2

2
‖wr‖2BTB +

βr(βr − βr−1)

2
‖xr − xr−1‖2BTB (2.50)

where in the last equality we have merged the terms βr+1−βr
2βr ‖µr−1 − µr‖2 and βr(βr−βr−1)

2 ‖Axr‖2.

Step 4. In this step we construct and estimate the descent of the potential function. For some

given c > 0, let us define the potential function as

Pβr+1,c(x
r+1, xr, µr+1) = Lβr+1(xr+1, µr+1) +

cβr+1βr

2
‖Axr+1‖2 +

cβr+1βr

2
‖xr − xr+1‖2BTB.

Note that this potential function has some major differences compared with the one we used before;

cf. (2.11). In particular, the second and the third terms are now quadratic, rather than linear, in

the penalty parameters. This new construction is the key to our following analysis.

Then combining the estimate in (2.50) and (2.48), we obtain

Pβr+1,c(x
r+1, xr, µr+1)− Pβr,c(xr, xr−1, µr)

≤ −
(
βr+1 − L

2
− 3

βr+1σmin

(
L2 + (βr+1 − βr)2‖BTB‖

)
− cβrL

)
‖xr+1 − xr‖2

+
βr+1 − βr−1

2βr
(

1

βr
+ c)‖µr − µr−1‖2 +

cβr(βr − βr−1)

2
‖xr − xr−1‖2BTB

−
(
c(βr)2

2
− 3(βr)2‖BTB‖

βr+1σmin

)
‖wr‖2BTB (2.51)

where in the inequality we have also used the fact that βr ≥ βr−1.



www.manaraa.com

40

Taking the sum of r from t to T (for some T > t > 1) and utilize again the estimate in (2.46),

we have

PβT+1,c(x
T+1, xT , µT+1)− Pβt,c(xt, xt−1, µt)

≤
T∑
r=t

−
(
βr+1 − L

2
− 3 + 3(1/βr + c)(βr+1 − βr−1)/2βr

βr+1σmin

(
L2 + (βr+1 − βr−1)2‖BTB‖

)
− cβrL− cβr+1(βr+1 − βr)‖BTB‖

2

)
‖xr+1 − xr‖2

−
(
c(βr)2

2
− (3 + 3(1/βr + c)(βr+1 − βr−1)/2βr)(βr)2‖BTB‖

βr+1σmin

)
‖wr‖2BTB

+
cβt(βt − βt−1)

2
‖xt − xt−1‖2BTB +

βt+1 − βt−1

2βt
(1/βt + c)‖µt − µt−1‖2. (2.52)

First, note that for any c ∈ (0, 1), the coefficient in front of ‖wr‖2BTB becomes negative for suffi-

ciently large (but finite) t. This is because {βr} → ∞, and that the first term in the parenthesis

scales in O((βr)2) while the second term scales in O(βr) . For the first term to be negative, we

need c > 0 to be small enough such that the following is true for large enough r

βr+1 − L
2

− cβrL− cβr+1(βr+1 − βr)‖BTB‖
2

>
βr+1

24
.

Suppose that r is large enough such that (βr+1 − L)/2 > βr+1/3, or equivalently βr+1 > 3L. Also

choose c = min{1/(4L), 1/(12κ‖BTB‖)}, where κ is given in (4.61). Then we have

βr+1 − L
2

− cβrL− cβr+1(βr+1 − βr)‖BTB‖
2

>
βr+1

3
− βr+1

4
− βr+1

24
=
βr+1

24
. (2.53)

For this given c, we can also show that the following is true for sufficiently large r

3 + 3(1/βr + c)(βr+1 − βr−1)/2βr

βr+1σmin

(
L2 + (βr+1 − βr)2‖BTB‖

)
≤ βr+1

48(
c(βr)2

2
− (3 + 3(1/βr + c)(βr+1 − βr−1)/2βr)(βr)2‖BTB‖

βr+1σmin

)
≥ c(βr)2

48
.

In conclusion we have that for sufficiently large but finite t0, we have

PβT+1,c(x
T+1, xT , µT+1)− Pβt0 ,c(xt0−1, xt0 , µt0)

≤
T∑

r=t0

(
−β

r+1

48
‖xr+1 − xr‖2 − c(βr)2

48
‖wr‖2BTB

)
+
cβt0(βt0 − βt0−1)

2
‖xt0 − xt0−1‖2BTB +

βt0+1 − βt0−1

2βt0
(1/βt0 + c)‖µt0 − µt0−1‖2. (2.54)
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Therefore we conclude that if {βr+1} satisfies (4.61), and for c > 0 sufficiently small, there exits

a finite t0 > 0 such that for all T > t0, the first two terms of the rhs of (2.52) are negative.

Step 5. Next we show that the potential function must be lower bounded. Observe that the

augmented Lagrangian is given by

Lβr+1(xr+1, µr+1)

= f(xr+1) + 〈µr+1, Axr+1〉+
βr+1

2
‖Axr+1‖2

= f(xr+1) +
1

2βr+1

(
‖µr+1‖2 − ‖µr‖2 + ‖µr+1 − µr‖2

)
+
βr+1

2
‖Axr+1‖2

= f(xr+1) +
1

2βr+1
‖µr+1‖2 − 1

2βr
‖µr‖2 +

1

2βr+1
‖µr+1 − µr‖2 +

(
1

2βr
− 1

2βr+1

)
‖µr‖2 +

βr+1

2
‖Axr+1‖2

≥ f(xr+1) +
1

2βr+1
‖µr+1‖2 − 1

2βr
‖µr‖2 +

1

2βr+1
‖µr+1 − µr‖2 +

βr+1

2
‖Axr+1‖2

where we have used the fact that βr+1 ≥ βr. Note that t0 in (2.54) is a finite number hence

1
2βt0
‖µt0‖2 is finite, and utilize Assumption [A2], we conclude that

∞∑
r=t0

Lβr+1(xr+1, µr+1) > −∞. (2.55)

By noting that the remaining terms of the potential function are all nonnegative, we have

∞∑
r=1

Pβr+1,c(x
r+1, xr, µr+1) > −∞. (2.56)

Combining (2.56) and the bound (2.54) (which is true for a finite t0 > 0), we conclude that the

potential function Pβr+1,c(x
r+1, xr, µr+1) is lower bounded for all r.

Step 6. In this step we show that the successive differences of various quantities converge.

The lower boundedness of the potential function combined with the bound (2.54) (which is true

for a finite t0 > 0) implies that

∞∑
r=1

βr+1‖xr+1 − xr‖2 <∞, (2.57a)

∞∑
r=1

(βr)2 ‖wr‖2BTB <∞. (2.57b)
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Therefore, we have

βr+1‖xr+1 − xr‖2 → 0, (2.58a)(
βr)2‖wr

∥∥2

BTB
→ 0. (2.58b)

These two facts applied to (2.45), combined with µr+1− µr ∈ col(A), indicate that the following is

true

µr+1 − µr → 0. (2.59)

Also (2.54) implies that the potential function is upper bounded as well, and this indicates that

cβr+1βr

2
‖Axr+1‖2 is bounded,

cβr+1βr

2
‖xr − xr+1‖2 is bounded. (2.60)

The second of the above inequality implies that βr+1BTB(xr+1− xr) is bounded. If we further

assume that ∇f(x) is bounded, and use (2.44), we can conclude that {µr} is bounded.

Step 7. Next we show that every limit point of (xr, µr) converges to a stationary solution of

problem (5.13). Let us pass a subsequence K to (xr, µr) and denote (x∗, µ∗) as its limit point. For

notational simplicity, in the following the index r all belongs to the set K.

From relation (2.57a) we have that any given ε > 0, there exists t large enough such that the

following is true

∞∑
r=t−1

βr+1‖xr+1 − xr‖2 ≤ ε

cκ16
. (2.61)

Utilizing (2.47), we have that the following is true

∞∑
r=1

1

βr+1
‖vr+1‖2 <∞, lim

t→∞

∞∑
r=t

(βr)2 ‖wr‖2BTB = 0. (2.62)

The first relation implies that lim infr→∞ ‖vr+1‖ = 0. Applying these relations to (2.46), we have

∞∑
r=1

1

βr+1
‖µr+1 − µr‖2 <∞.

This implies that for any given ε > 0, c > 0, there exists an index t sufficiently large such that

∞∑
r=t−1

1

βr+1
‖µr+1 − µr‖2 < ε2

4096L‖BTB‖Fκ(1 + c)
. (2.63)
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Applying this inequality and (2.61) to (2.54), we have that for large enough t and for any T > t

the following is true

PβT+1,c(x
T+1, xT , µT+1)− Pβt,c(xt, xt−1, µt) ≤ −

T∑
r=t

(
βr+1

48
‖xr+1 − xr‖2

)
+

ε2

4096L‖BTB‖
.

(2.64)

Next we modify a classical argument in [15][Proposition 3.5] to show that

lim
r→∞

‖vr+1‖ → 0.

We already know from the first relation in (2.62) that lim infr→∞ ‖vr+1‖ = 0. Suppose that ‖vr+1‖

does not converge to 0, then we must have lim supr→∞ ‖vr+1‖ > 0. Hence there exists an ε > 0

such that ‖vr+1‖ < ε/2 for infinitely many r, and ‖vr+1‖ > ε for infinitely many r. Then there

exists an infinite subset of iteration indices R such that for each r ∈ R, there exits a t(r) such that

‖vr‖ < ε/2, , ‖vt(r)‖ > ε,

ε/2 < ‖vt‖ ≤ ε, ∀ r < t < t(r).

Using the fact that limr∈K µ
r = µ∗, we have that for r large enough, the following is true for all

t ≥ 0

‖µr − µr+t‖ ≤ ε

8

1

‖(BTB)−1‖‖ATA‖
. (2.65)

Without loss of generality we can assume that this relation holds for all r ∈ R. Note that the

following is true

ε

2
≤ ‖vt(r)‖ − ‖vr‖ ≤ ‖vt(r) − vr‖ =

∥∥∥∥(BTB)−1

t(r)−1∑
t=r

(
∇f(xt+1)−∇f(xt) +AT (µt+1 − µt)

) ∥∥∥∥
≤ ‖(BTB)−1‖

( t(r)−1∑
t=r

‖∇f(xt+1)−∇f(xt)‖+ ‖ATA‖‖µt(r) − µr‖
)

(2.47)

≤ ‖(BTB)−1‖
( t(r)−1∑

t=r

L

βt+1
‖vt+1‖+ ‖ATA‖‖µt(r) − µr‖

)

≤ εL‖(BTB)−1‖
t(r)−1∑
t=r

1

βt+1
+
ε

8
(2.66)
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where in the last inequality we have used (2.65) and the fact that for all t ∈ (r + 1, t(r)), we have

‖vt‖ < ε. This implies that

3

8L‖(BTB)−1‖
≤

t(r)−1∑
t=r

1

βt+1
. (2.67)

Using the descent of the potential function (2.64) we have, for r ∈ R and r large enough

Pβt(r),c(x
t(r), xt(r)−1, µt(r))− Pβr,c(xr, xr−1, µr)

≤ −
t(r)−1∑
t=r

1

48βt+1
‖vt+1‖2 +

ε2

4096L‖BTB‖

(i)

≤ −
( ε

4

)2
t(r)−1∑
t=r

1

48βt+1
+

ε2

4096L‖BTB‖
(ii)

≤ − ε2

2048L‖BTB‖
+

ε2

4096L‖BTB‖

≤ − ε2

4096L‖BTB‖
(2.68)

where in (i) we have used the fact that for all r ∈ R, ‖vr+i‖ ≥ ε
2 for i = 1, · · · , t(r); in (ii) we have

used (2.67). However we know that the potential function is convergent, i.e.,

lim
r→∞

Pβt(r),c(x
t(r), xt(r)−1, µt(r))→ Pβr,c(x

r, xr−1, µr) = 0

which contradicts to (4.108). Therefore we conclude that ‖vr+1‖ → 0.

Finally, combining ‖vr+1‖ → 0 with the convergence of µr+1−µr (cf. (2.59)), we conclude that

every limit point of {xr, µr} satisfies

∇f(x∗) +ATµ∗ = 0, Ax∗ = 0.

Therefore it is a stationary solution for problem (5.13). This completes the proof.

2.8.9 Proof of Convergence for Algorithm 2

To make the derivation compact, define the following matrix

M r+1 := ∇Xf(Xr+1, Y r+1)

=
[
((Xr+1

1 yr+1
1 )− z1)(yr+1

1 )T + 2γXr+1
1 ; · · · ; ((Xr+1

N yr+1
N )− zN )(yr+1

N )T + 2γXr+1
N

]
.

(2.69)
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The proof consists of six steps.

Step 1. First we note that the optimality condition for the X-subproblem (2.30c) is given by

ATΩr+1 = −M r+1 − β〈BTB, (Xr+1 −Xr)〉. (2.70)

By utilizing the fact that Ωr+1 − Ωr lies in the column space of A, and the eigenvalues of ATA

equal to those of ATA, we have the following bound

‖Ωr+1 −Ωr‖2F ≤
2

σmin

(
‖M r+1 −M r‖2F + β2‖BTB[(Xr+1 −Xr)− (Xr −Xr−1)]‖2F

)
.

Next let us analyze the first term in the rhs of the above inequality. The following identity holds

true

‖M r+1 −M r‖2F

=
N∑
i=1

‖(Xr+1
i yr+1

i − zi)(yr+1
i )T − (Xr

i y
r
i − zi)(yri )T + 2γ(Xr+1

i −Xr
i )‖2F

≤
N∑
i=1

4‖Xr+1
i −Xr

i ‖2F ‖yr+1
i (yr+1

i )T ‖2 + 4‖Xr
i y

r
i − zi‖2‖yr+1

i − yri ‖2

+ 4‖Xr
i (yr+1

i − yri )‖2‖yr+1
i ‖2 + 16γ2‖Xr+1

i −Xr
i ‖2F

≤
N∑
i=1

4(τ2 + 4γ2)‖Xr+1
i −Xr

i ‖2F + 4θri ‖yr+1
i − yri ‖2 + 4τ‖Xr

i (yr+1
i − yri )‖2 (2.71)

where in the last inequality we have defined the constant θri as

θri := ‖Xr
i y

r
i − zi‖2. (2.72)

Therefore, combining the above two inequalities, we obtain

1

β
‖Ωr+1 −Ωr‖2F ≤

8

βσmin

N∑
i=1

(
(τ2 + 4γ2)‖Xr+1

i −Xr
i ‖2F + θri ‖yr+1

i − yri ‖2 + τ‖Xr
i (yr+1

i − yri )‖2
)

+
2β

σmin
‖BTB[(Xr+1 −Xr)− (Xr −Xr−1)]‖2F (2.73)
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Step 2. Next let us analyze the descent of the augmented Lagrangian. First we have

Lβ(Xr, Y r+1,Ωr)− Lβ(Xr, Y r,Ωr)

=
N∑
i=1

(
1

2
‖Xr

i y
r+1
i − zi‖2 + hi(y

r+1
i )− 1

2
‖Xr

i y
r
i − zi‖2 − hi(yri )

)

≤
N∑
i=1

(
1

2
‖Xr

i y
r+1
i − zi‖2 + hi(y

r+1
i ) +

θri
2
‖yr+1
i − yri ‖2 −

1

2
‖Xr

i y
r
i − zi‖2 − hi(yri )

)

≤
N∑
i=1

(〈
(Xr

i )T (Xr
i y

r+1
i − zi) + θri (y

r+1
i − yri ), yr+1

i − yri
〉
− 1

2
‖Xr

i (yr+1
i − yri )‖2

− θri
2
‖yr+1
i − yri ‖2 + 〈ζr+1

i , yr+1
i − yri 〉

)
≤ −

N∑
i=1

(
1

2
‖Xr

i (yr+1
i − yri )‖2 +

θri
2
‖yr+1
i − yri ‖2

)
(2.74)

where in the second to the last equality we have used the convexity of hi, and ζr+1
i ∈ ∂hi(yr+1

i );

the last inequality uses the optimality condition of the y-step (2.30b). Similarly, we can show that

Lβ(Xr+1, Y r+1,Ωr)− Lβ(Xr, Y r+1,Ωr) ≤ −β + 2γ

2
‖Xr+1 −Xr‖2F (2.75)

where we have utilized the fact that ATA+BTB = 2D � INM . Therefore, combining the estimate

(2.73), we obtain

Lβ(Xr+1, Y r+1,Ωr+1)− Lβ(Xr, Y r,Ωr)

≤ −
(
β + 2γ

2
− 8(τ2 + 4γ2)

βσmin

) N∑
i=1

‖Xr+1
i −Xr

i ‖2F −
N∑
i=1

(
θri
2
− 8θri
βσmin

)
‖yr+1
i − yri ‖2

−
(

1

2
− 8τ

σminβ

) N∑
i=1

‖Xr
i (yr+1

i − yri )‖2 +
2β

σmin
‖BTB[(Xr+1 −Xr)− (Xr −Xr−1)]‖2F . (2.76)

Step 3. This step follows Lemma 3 in the analysis of Algorithm 1. In particular, after writing

down the optimality condition of the Xr+1 and Xr step, we can obtain

〈AT (Ωr+1 −Ωr),Xr+1 −Xr〉

≤ −
〈
M r+1 −M r + βBTB

[
(Xr+1 −Xr)− (Xr −Xr−1)

]
,Xr+1 −Xr

〉
.
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Then it is easy to show that the above inequality implies the following

β

2

(
〈AXr+1,AXr+1〉+ 〈BTB(Xr+1 −Xr),Xr+1 −Xr〉

)
≤ β

2

(
〈AXr,AXr〉+ 〈BTB(Xr −Xr−1),Xr −Xr−1〉

)
− β

2
〈A(Xr+1 −Xr),A(Xr+1 −Xr)〉

− 〈M r+1 −M r,Xr+1 −Xr〉 − β

2
‖B[(Xr+1 −Xr)− (Xr −Xr−1)]‖2F .

Note the following fact

− 〈M r+1 −M r,Xr+1 −Xr〉

= −〈∇Xf(Xr+1, Y r+1)−∇Xf(Xr, Y r),Xr+1 −Xr〉

= −〈∇Xf(Xr+1, Y r+1)−∇Xf(Xr, Y r+1) +∇Xf(Xr, Y r+1)−∇Xf(Xr, Y r),Xr+1 −Xr〉
(i)

≤ −〈∇Xf(Xr, Y r+1)−∇Xf(Xr, Y r),Xr+1 −Xr〉
(ii)

≤ 1

2d
‖∇Xf(Xr, Y r+1)−∇Xf(Xr, Y r)‖2F +

d

2
‖Xr+1 −Xr‖2F

(iii)

≤ 1

d

N∑
i=1

(
θri ‖yr+1

i − yri ‖2 + τ‖Xr
i (yr+1

i − yri )‖2
)

+
d

2
‖Xr+1 −Xr‖2F (2.77)

where in (i) we utilize the convexity of f(X, Y ) wrt X for any fixed y; in (ii) we use the Cauchy-

Swartz inequality, where d > 0 is a constant (to be determined later); (iii) is true due to a similar

calculation as in (2.71).

Overall we have

β

2

(
〈AXr+1,AXr+1〉+ 〈BTB(Xr+1 −Xr),Xr+1 −Xr〉

)
≤ β

2

(
〈AXr,AXr〉+ 〈BTB(Xr −Xr−1),Xr −Xr−1〉

)
− β

2
〈A(Xr+1 −Xr),A(Xr+1 −Xr)〉

+
1

d

N∑
i=1

(
θri ‖yr+1

i − yri ‖2 + τ‖Xr
i (yr+1

i − yri )‖2
)

+
d

2
‖Xr+1 −Xr‖2F

− β

2
‖B[(Xr+1 −Xr)− (Xr −Xr−1)]‖2F (2.78)

Step 4. Let us define the potential function as

Pβ,c(X
r+1,Xr, Y r+1,Ωr+1)

:= Lβ(Xr+1, Y r+1,Ωr+1) +
cβ

2

(
〈AXr+1,AXr+1〉+ 〈BTB(Xr+1 −Xr),Xr+1 −Xr〉

)
. (2.79)
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Then utilize the bounds (2.76) and (2.78), we obtain

Pβ,c(X
r+1,Xr, Y r+1,Ωr+1)− Pβ,c(Xr,Xr−1, Y r,Ωr)

≤ −
(
β + 2γ

2
− 8(τ2 + 4γ2)

βσmin
− cd

2

) N∑
i=1

‖Xr+1
i −Xr

i ‖2F

−
N∑
i=1

(
θri
2
− 8θri
βσmin

− cθri
d

)
‖yr+1
i − yri ‖2 −

(
1

2
− 8τ

σminβ
− cτ

d

) N∑
i=1

‖Xr
i (yr+1

i − yri )‖2

−
(
cβ

2
− 2β‖BTB‖

σmin

)
‖B[(Xr+1 −Xr)− (Xr −Xr−1)]‖2F .

Therefore the following are the condition that guarantees the descent of the potential function

β + 2γ

2
− 8(τ2 + 4γ2)

βσmin
− cd

2
> 0,

1

2
− 8

σminβ
− c

d
> 0

1

2
− 8τ

σminβ
− cτ

d
> 0,

cβ

2
− 2β‖BTB‖

σmin
> 0.

(2.80)

To see that it is always possible to find the tuple (β, c, d), first let us set c such that the last

inequality is satisfied

c >
4‖BTB‖
σmin

. (2.81)

Second, let us pick any d such that the following is true

d > max{2cτ, 2c}.

Then clearly it is possible to make β large enough such that all the four conditions in (2.80) are

satisfied.

Step 5. We need to prove that the potential function is lower bounded. We lower bound the

augmented Lagrangian as follows

Lβ(Xr+1, Y r+1,Ωr+1)

=
N∑
i=1

(
1

2
‖Xr+1

i yr+1
i − zi‖2 + γ‖Xr+1

i ‖2F + hi(y
r+1
i )

)
+ 〈Ωr+1,AXr+1〉+

β

2
〈AXr+1,AXr+1〉

=

N∑
i=1

(
1

2
‖Xr+1

i yr+1
i − zi‖2 + γ‖Xr+1

i ‖2F + hi(y
r+1
i )

)
+
β

2
〈AXr+1,AXr+1〉

+
1

2β

(
‖Ωr+1 −Ωr‖2F + ‖Ωr+1‖2F − ‖Ωr‖2F

)
. (2.82)
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Then by the same argument leading to (2.39), we conclude that as long as hi is lower bounded over

its domain, then the potential function will be lower bounded.

Step 6. Combining the results in Step 5 and Step 4, we conclude the following

N∑
i=1

‖Xr+1
i −Xr

i ‖2F → 0,
N∑
i=1

‖yr+1
i − yri ‖2 → 0 (2.83a)

N∑
i=1

‖Xr
i (yr+1

i − yri )‖2 → 0,
∥∥BTB[(Xr+1 −Xr)− (Xr −Xr−1)]

∥∥
F
→ 0. (2.83b)

Then utilizing (2.73), we have

Ωr+1 −Ωr → 0, or equivalently AXr+1 → 0.

That is, in the limit the network-wide consensus is achieved. Next we show that the primal and

dual iterates are bounded.

Note that the potential function is both lower and upper bounded. Combined with (2.83) we

must have that the augmented Lagrangian is both upper and lower bounded. Using the expression

(2.82), the assumption that hi(yi) is lower bounded, and the fact that yi is bounded, we have that

in the limit, the following term is bounded

N∑
i=1

1

2
‖Xr+1

i yr+1
i − zi‖2 + γ‖Xr+1

i ‖2F .

This implies that the primal variable sequence {Xr+1
i } are bounded for all i. To show the bound-

edness of the dual sequence, note that Ωr+1 ∈ col(A) (due to the initialization that Ω0 = 0).

Therefore using (2.70) we have

σmin(ATA)‖Ωr+1‖2F ≤ 2‖M r+1‖2F + 2β‖BTB(Xr+1 −Xr)‖2F

Note that from the expression of M in (2.69), we see that {M r+1} is bounded because both Xr+1

and Y r+1 are bounded. Similarly, the second term on the rhs of the above inequality is bounded

because Xr+1 →Xr. These two facts imply that {Ωr+1} is bounded as well.

Arguing the convergence to stationary point as well as the convergence rate follows exactly the

same steps as in the proof of Theorem 1.



www.manaraa.com

50

CHAPTER 3. A NONCONVEX PRIMAL-DUAL SPLITTING METHOD

FOR DISTRIBUTED AND STOCHASTIC OPTIMIZATION

Abstract

We study a stochastic and distributed algorithm for nonconvex problems whose objective con-

sists of a sum of N nonconvex Li/N -smooth functions, plus a nonsmooth regularizer. The proposed

NonconvEx primal-dual SpliTTing (NESTT) algorithm splits the problem into N subproblems,

and utilizes an augmented Lagrangian based primal-dual scheme to solve it in a distributed and

stochastic manner. With a special non-uniform sampling, a version of NESTT achieves ε-stationary

solution using O((
∑N

i=1

√
Li/N)2/ε) gradient evaluations, which can be up to O(N) times bet-

ter than the (proximal) gradient descent methods. It also achieves Q-linear convergence rate for

nonconvex `1 penalized quadratic problems with polyhedral constraints. Further, we reveal a fun-

damental connection between primal-dual based methods and a few primal only methods such as

IAG/SAG/SAGA.

3.1 Introduction

Consider the following nonconvex and nonsmooth constrained optimization problem

min
z∈Z

f(z) :=
1

N

N∑
i=1

gi(z) + g0(z) + p(z), (3.1)

where Z ⊆ Rd; for each i ∈ {0, · · · , N}, gi : Rd → R is a smooth possibly nonconvex function which

has Li-Lipschitz continuous gradient; p(z) : Rd → R is a lower semi-continuous convex but possibly

nonsmooth function. Define g(z) := 1
N

∑N
i=1 gi(z) for notational simplicity.

Problem (4.1) is quite general. It arises frequently in applications such as machine learning

and signal processing; see a recent survey [23]. In particular, each smooth functions {gi}Ni=1 can

represent: 1) a mini-batch of loss functions modeling data fidelity, such as the `2 loss, the logistic
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loss, etc; 2) nonconvex activation functions for neural networks, such as the logit or the tanh

functions; 3) nonconvex utility functions used in signal processing and resource allocation, see [18].

The smooth function g0 can represent smooth nonconvex regularizers such as the non-quadratic

penalties [7], or the smooth part of the SCAD or MCP regularizers (which is a concave function)

[137]. The convex function p can take the following form: 1) nonsmooth convex regularizers such

as `1 and `2 functions; 2) an indicator function for convex and closed feasible set Z, denoted

as ιZ(·); 3) convex functions without global Lipschitz continuous gradient, such as p(z) = z4 or

p(z) = 1/z + ιz≥0(z).

In this work we solve (4.1) in a stochastic and distributed manner. We consider the setting in

which N distributed agents each having the knowledge of one smooth function {gi}Ni=1, and they

are connected to a cluster center which handles g0 and p. At any given time, a randomly selected

agent is activated and performs computation to optimize its local objective. Such distributed

computation model has been popular in large-scale machine learning and signal processing [20].

Such model is also closely related to the (centralized) stochastic finite-sum optimization problem

[78, 31, 71, 111, 4, 118], in which each time the iterate is updated based on the gradient information

of a random component function. One of the key differences between these two problem types is

that in the distributed setting there can be disagreement between local copies of the optimization

variable z, while in the centralized setting only one copy of z is maintained.

Our Contributions. We propose a class of NonconvEx primal-dual SpliTTing (NESTT)

algorithms for problem (4.1). We split z ∈ Rd into local copies of xi ∈ Rd, while enforcing the

equality constraints xi = z for all i. That is, we consider the following reformulation of (4.1)

min
x,z∈Rd

`(x, z) :=
1

N

N∑
i=1

gi(xi) + g0(z) + h(z), s.t. xi = z, i = 1, · · · , N, (3.2)

where h(z) := ιZ(z) + p(z), x := [x1; · · · ;xN ]. Our algorithm uses the Lagrangian relaxation of

the equality constraints, and at each iteration a (possibly non-uniformly) randomly selected primal

variable is optimized, followed by an approximate dual ascent step. Note that such splitting scheme

has been popular in the convex setting [20], but not so when the problem becomes nonconvex.
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The NESTT is one of the first stochastic algorithms for distributed nonconvex nonsmooth

optimization, with provable and nontrivial convergence rates. Our main contribution is given

below. First, in terms of some primal and dual optimality gaps, NESTT converges sublinearly to a

point belongs to stationary solution set of (3.2). Second, NESTT converges Q-linearly for certain

nonconvex `1 penalized quadratic problems. To the best of our knowledge, this is the first time

that linear convergence is established for stochastic and distributed optimization of such type of

problems. Third, we show that a gradient-based NESTT with non-uniform sampling achieves an

ε-stationary solution of (4.1) using O((
∑N

i=1

√
Li/N)2/ε) gradient evaluations. Compared with

the classical gradient descent, which in the worst case requires O(
∑N

i=1 Li/ε) gradient evaluation

to achieve ε-stationarity, our obtained rate can be up to O(N) times better in the case where the

Li’s are not equal.

Our work also reveals a fundamental connection between primal-dual based algorithms and the

primal only average-gradient based algorithm such as SAGA/SAG/IAG [31, 118, 19]. With the key

observation that the dual variables in NESTT serve as the “memory” of the past gradients, one can

specialize NESTT to SAGA/SAG/IAG. Therefore, NESTT naturally generalizes these algorithms

to the nonconvex nonsmooth setting. It is our hope that by bridging the primal-dual splitting

algorithms and primal-only algorithms (in both the convex and nonconvex setting), there can be

significant further research developments benefiting both algorithm classes.

Related Work. Many stochastic algorithms have been designed for (3.2) when it is convex.

In these algorithms the component functions gi’s are randomly sampled and optimized. Popular

algorithms include the SAG/SAGA [31, 118], the SDCA [120], the SVRG [71], the RPDG [78]

and so on. When the problem becomes nonconvex, the well-known incremental based algorithm

can be used [128, 13], but these methods generally lack convergence rate guarantees. The SGD

based method has been studied in [44], with O(1/ε2) convergence rate. Recent works [4] and

[111] develop algorithms based on SVRG and SAGA for a special case of (4.1) where the entire

problem is smooth and unconstrained. To the best of our knowledge there has been no stochastic

algorithms with provable, and non-trivial, convergence rate guarantees for solving problem (4.1).
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On the other hand, distributed stochastic algorithms for solving problem (4.1) in the nonconvex

setting has been proposed in [63], in which each time a randomly picked subset of agents update

their local variables. However there has been no convergence rate analysis for such distributed

stochastic scheme. There has been some recent distributed algorithms designed for (4.1) [92], but

again without global convergence rate guarantee.

Preliminaries. The augmented Lagrangian function for problem (4.1) is given by:

L (x, z;λ) =
N∑
i=1

(
1

N
gi(xi) + 〈λi, xi − z〉+

ηi
2
‖xi − z‖2

)
+ g0(z) + h(z), (3.3)

where λ := {λi}Ni=1 is the set of dual variables, and η := {ηi > 0}Ni=1 are penalty parameters.

We make the following assumptions about problem (4.1) and the function (3.3).

A-(a) The function f(z) is bounded from below over Z∩ int(dom f): f := minz∈Z f(z) > −∞. p(z)

is a convex lower semi-continuous function; Z is a closed convex set.

A-(b) The gi’s and g have Lipschitz continuous gradients, i.e.,

‖∇g(y)−∇g(z)‖ ≤ L‖y − z‖, and ‖∇gi(y)−∇gi(z)‖ ≤ Li‖y − z‖, ∀ y, z

Clearly L ≤ 1/N
∑N

i=1 Li, and the equality can be achieved in the worst case. For simplicity

of analysis we will further assume that L0 ≤ 1
N

∑N
i=1 Li.

A-(c) Each ηi in (3.3) satisfies ηi > Li/N ; if g0 is nonconvex, then
∑N

i=1 ηi > 3L0.

Assumption A-(c) implies that L (x, z;λ) is strongly convex w.r.t. each xi and z, with modulus

γi := ηi − Li/N and γz =
∑N

i=1 ηi − L0, respectively [149, Theorem 2.1].

We then define the prox-gradient (pGRAD) for (4.1), which will serve as a measure of stationarity.

It can be checked that the pGRAD vanishes at the set of stationary solutions of (4.1) [110].

Definition 1 The proximal gradient of problem (4.1) is given by (for any γ > 0)

∇̃fγ(z) := γ
(
z − proxγp+ιZ [z − 1/γ∇(g(z) + g0(z))]

)
, with proxγp+ιZ [u] := argmin

u∈Z
p(u)+

γ

2
‖z−u‖2.
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Algorithm 3 NESTT-G Algorithm

1: for r = 1 to R do

2: Pick ir ∈ {1, 2, · · · , N} with probability pir and update (x, λ)

xr+1
ir

= arg min
xir

Vir
(
xir , z

r, λrir
)

; (3.4)

λr+1
ir

= λrir + αirηir
(
xr+1
ir
− zr

)
; (3.5)

λr+1
j = λrj , xr+1

j = zr, ∀ j 6= ir; (3.6)

Update z: zr+1 = arg min
z∈Z

L({xr+1
i }, z;λr). (3.7)

3: end for

4: Output: (zm, xm, λm) where m randomly picked from {1, 2, · · · , R}.

3.2 The NESTT-G Algorithm

Algorithm Description. We present a primal-dual splitting scheme for the reformulated problem

(3.2). The algorithm is referred to as the NESTT with Gradient step (NESTT-G) since each agent

only requires to know the gradient of each component function. To proceed, let us define the

following function (for some constants {αi > 0}Ni=1):

Vi(xi, z;λi) =
1

N
gi(z) +

1

N
〈∇gi(z), xi − z〉+ 〈λi, xi − z〉+

αiηi
2
‖xi − z‖2.

Note that Vi(·) is related to L(·) in the following way: it is a quadratic approximation (approxi-

mated at the point z) of L(x, y;λ) w.r.t. xi. The parameters α := {αi}Ni=1 give some freedom to

the algorithm design, and they are critical in improving convergence rates as well as in establishing

connection between NESTT-G with a few primal only stochastic optimization schemes.

The algorithm proceeds as follows. Before each iteration begins the cluster center broadcasts z

to everyone. At iteration r+1 a randomly selected agent ir ∈ {1, 2, · · ·N} is picked, who minimizes

Vir(·) w.r.t. its local variable xir , followed by a dual ascent step for λir . The rest of the agents update

their local variables by simply setting them to z. The cluster center then minimizes L(x, z;λ) with

respect to z. See Algorithm 1 for details. We remark that NESTT-G is related to the popular

ADMM method for convex optimization [20]. However our particular update schedule (randomly

picking (xi, λi) plus deterministic updating z), combined with the special x-step (minimizing an
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approximation of L(·) evaluated at a different block variable z) is not known before. These features

are critical in our following rate analysis.

Convergence Analysis. To proceed, let us define r(j) as the last iteration in which the jth

block is picked before iteration r + 1. i.e. r(j) := max{t | t < r + 1, j = i(t)}. Define yrj := zr(j) if

j 6= ir, and yrir = zr. Define the filtration Fr as the σ-field generated by {i(t)}r−1
t=1 .

A few important observations are in order. Combining the (x, z) updates (3.4) – (3.7), we have

xr+1
q = zr − 1

αqηq
(λrq +

1

N
∇gq(zr)),

1

N
∇gq(zr) + λrq + αqηq(x

r+1
q − zr) = 0, with q = ir (3.8a)

λr+1
ir

= − 1

N
∇gir(zr), λr+1

j = − 1

N
∇gj(zr(j)), ∀ j 6= ir, ⇒ λr+1

i = − 1

N
∇gi(yri ), ∀ i (3.8b)

xr+1
j

(3.6)
= zr

(3.8b)
= zr − 1

αjηj
(λrj +

1

N
∇gj(zr(j))), ∀ j 6= ir. (3.8c)

The key here is that the dual variables serve as the “memory” for the past gradients of gi’s. To

proceed, we first construct a potential function using an upper bound of L(x, y;λ). Note that

1

N
gj(x

r+1
j ) + 〈λrj , xr+1

j − zr〉+
ηj
2
‖xr+1

j − zr‖2 =
1

N
gj(z

r), ∀ j 6= ir (3.9)

1

N
gir(x

r+1
ir

) + 〈λrir , x
r+1
ir
− zr〉+

ηi
2
‖xr+1

ir
− zr‖2

(i)

≤ 1

N
gir(z

r) +
ηir + Lir/N

2
‖xr+1

ir
− zr‖2

(ii)
=

1

N
gir(z

r) +
ηir + Lir/N

2(αirηir)
2
‖1/N(∇gir(yr−1

ir
)−∇gir(zr))‖2 (3.10)

where (i) uses (3.8b) and applies the descent lemma on the function 1/Ngi(·); in (ii) we have used

(3.5) and (3.8b). Since each i is picked with probability pi, we have

Eir [L(xr+1, zr;λr) | Fr]

≤
N∑
i=1

1

N
gi(z

r) +
N∑
i=1

pi(ηi + Li/N)

2(αiηi)2
‖1/N(∇gi(yr−1

i )−∇gi(zr))‖2 + g0(zr) + h(zr)

≤
N∑
i=1

1

N
gi(z

r) +
N∑
i=1

3piηi
(αiηi)2

‖1/N(∇gi(yr−1
i )−∇gi(zr))‖2 + g0(zr) + h(zr) := Qr,

where in the last inequality we have used Assumption [A-(c)]. In the following, we will use EFr [Qr]

as the potential function, and show that it decreases at each iteration.
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Lemma 6 Suppose Assumption A holds, and pick

αi = pi = βηi, where β :=
1∑N
i=1 ηi

, and ηi ≥
9Li
Npi

, i = 1, · · ·N. (3.11)

Then the following descent estimate holds true for NESTT-G

E[Qr −Qr−1|Fr−1] ≤ −
∑N

i=1 ηi
8

Ezr‖zr − zr−1‖2 −
N∑
i=1

1

2ηi
‖ 1

N
(∇gi(zr−1)−∇gi(yr−2

i ))‖2. (3.12)

Sublinear Convergence. Define the optimality gap as the following:

E[Gr] := E
[
‖∇̃1/βf(zr)‖2

]
=

1

β2
E
[
‖zr − prox

1/β
h [zr − β∇(g(zr) + g0(zr))]‖2

]
. (3.13)

Note that when h, g0 ≡ 0, E[Gr] reduces to E[‖∇g(zr)‖2]. We have the following result.

Theorem 4 Suppose Assumption A holds, and pick (for i = 1, · · · , N)

αi = pi =

√
Li/N∑N

i=1

√
Li/N

, ηi = 3

(
N∑
i=1

√
Li/N

)√
Li/N, β =

1

3(
∑N

i=1

√
Li/N)2

. (3.14)

Then every limit point generated by NESTT-G is a stationary solution of problem (3.2). Further,

1) E[Gm] ≤ 80

3

( N∑
i=1

√
Li/N

)2E[Q1 −QR+1]

R
;

2) E[Gm] + E

[
N∑
i=1

3η2
i

∥∥xmi − zm−1
∥∥2

]
≤ 80

3

(
N∑
i=1

√
Li/N

)2
E[Q1 −QR+1]

R
.

Note that Part (1) is useful in the centralized finite-sum minimization setting, as it shows the

sublinear convergence of NESTT-G, measured only by the primal optimality gap evaluated at

zr. Meanwhile, part (2) is useful in the distributed setting, as it also shows that the expected

constraint violation, which measures the consensus among agents, shrinks in the same order. We

also comment that the above result suggests that to achieve an ε-stationary solution, the NESTT-G

requires about O

((∑N
i=1

√
Li/N

)2

/ε

)
number of gradient evaluations (for simplicity we have

ignored an additive N factor for evaluating the gradient of the entire function at the initial step of

the algorithm).

It is interesting to observe that our choice of pi is proportional to the square root of the Lipschitz

constant of each component function, rather than to Li. Because of such choice of the sampling
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probability, the derived convergence rate has a mild dependency on N and Li’s. Compared with the

conventional gradient-based methods, our scaling can be up to N times better. Detailed discussion

and comparison will be given in Section 3.4.

Note that similar sublinear convergence rates can be obtained for the case αi = 1 for all i (with

different scaling constants). However due to space limitation, we will not present those results here.

Linear Convergence. In this section we show that the NESTT-G is capable of linear convergence

for a family of nonconvex quadratic problems, which has important applications, for example in

high-dimensional statistical learning [90]. To proceed, we will assume the following.

B-(a) Each function gi(z) is a quadratic function of the form gi(z) = 1/2zTAiz + 〈b, z〉, where Ai

is a symmetric matrix but not necessarily positive semidefinite;

B-(b) The feasible set Z is a closed compact polyhedral set;

B-(c) The nonsmooth function p(z) = µ‖z‖1, for some µ ≥ 0.

Our linear convergence result is based upon certain error bound condition around the stationary

solutions set, which has been shown in [94] for smooth quadratic problems and has been extended

to including `1 penalty in [132, Theorem 4]. Due to space limitation the statement of the condition

will be given in the supplemental material, along with the proof of the following result.

Theorem 5 Suppose that Assumptions A, B are satisfied. Then the sequence {E[Qr+1]}∞r=1 con-

verges Q-linearly 1 to some Q∗ = f(z∗), where z∗ is a stationary solution for problem (4.1). That

is, there exists a finite r̄ > 0, ρ ∈ (0, 1) such that for all r ≥ r̄, E[Qr+1 −Q∗]≤ ρE[Qr −Q∗].

Linear convergence of this type for problems satisfying Assumption B has been shown for (deter-

ministic) proximal gradient based methods [132, Theorem 2, 3]. To the best of our knowledge, this

is the first result that shows the same linear convergence for a stochastic and distributed algorithm.

1A sequence {xr} is said to converge Q-linearly to some x̄ if lim supr ‖xr+1 − x̄‖/‖xr − x̄‖ ≤ ρ, where ρ ∈ (0, 1)
is some constant; cf [132] and references therein.
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Algorithm 4 NESTT-E Algorithm

1: for r = 1 to R do

2: Update z by minimizing the augmented Lagrangian:

zr+1 = arg min
z

L(xr, z;λr). (3.15)

3: Randomly pick ir ∈ {1, 2, · · ·N} with probability pir :

xr+1
ir

= argmin
xir

Uir(xir , z
r+1;λrir); (3.16)

λr+1
ir

= λrir + αirηir
(
xr+1
ir
− zr+1

)
; (3.17)

xr+1
j = xrj , λr+1

j = λrj ∀ j 6= ir. (3.18)

4: end for

5: Output: (zm, xm, λm) where m randomly picked from {1, 2, · · · , R}.

3.3 The NESTT-E Algorithm

Algorithm Description. In this section, we present a variant of NESTT-G, which is named

NESTT with Exact minimization (NESTT-E). Our motivation is the following. First, in NESTT-

G every agent should update its local variable at every iteration [cf. (3.4) or (3.6)]. In practice this

may not be possible, for example at any given time a few agents can be in the sleeping mode so they

cannot perform (3.6). Second, in the distributed setting it has been generally observed (e.g., see [24,

Section V]) that performing exact minimization (whenever possible) instead of taking the gradient

steps for local problems can significantly speed up the algorithm. The NESTT-E algorithm to be

presented in this section is designed to address these issues. To proceed, let us define a new

function as follows:

U(x, z;λ) :=

N∑
i=1

Ui(xi, z;λi) :=

N∑
i=1

(
1

N
gi(xi) + 〈λi, xi − z〉+

αiηi
2
‖xi − z‖2

)
.

Note that if αi = 1 for all i, then the L(x, z;λ) = U(x, z;λ) + p(z) + h(z). The algorithm details

are presented in Algorithm 2.

Convergence Analysis. We begin analyzing NESTT-E. The proof technique is quite different

from that for NESTT-G, and it is based upon using the expected value of the Augmented Lagrangian

function as the potential function; see [63, 56, 54]. For the ease of description we define the following
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quantities:

w := (x, z, λ), β :=
1∑N
i=1 ηi

, ci :=
L2
i

αiηiN2
− γi

2
+

1− αi
αi

Li
N
, α := {αi}Ni=1.

To measure the optimality of NESTT-E, define the prox-gradient of L(x, z;λ) as:

∇̃L(w) =

[
(z − proxh[z −∇z(L(w)− h(z))]);∇x1L(w); · · · ;∇xNL(w)

]
∈ R(N+1)d. (3.19)

We define the optimality gap by adding to ‖∇̃L(w)‖2 the size of the constraint violation [63]:

H(wr) := ‖∇̃L(wr)‖2 +
N∑
i=1

L2
i

N2
‖xri − zr‖2.

It can be verified that H(wr)→ 0 implies that wr reaches a stationary solution for problem (3.2).

We have the following theorem regarding the convergence properties of NESTT-E.

Theorem 6 Suppose Assumption A holds, and that (ηi, αi) are chosen such that ci < 0 . Then for

some constant f , we have

E[L(wr)] ≥ E[L(wr+1)] ≥ f > −∞, ∀ r ≥ 0.

Further, almost surely every limit point of {wr} is a stationary solution of problem (3.2). Finally,

for some function of α denoted as C(α) = σ1(α)/σ2(α), we have the following:

E[H(wm)] ≤ C(α)E[L(w1)− L(wR+1)]

R
, (3.20)

where σ1 := max(σ̂1(α), σ̃1) and σ2 := max(σ̂2(α), σ̃2), and these constants are given by

σ̂1(α) = max
i

{
4

(
L2
i

N2
+ η2

i +

(
1

αi
− 1

)2 L2
i

N2

)
+ 3

(
L4
i

αiη2
iN

4
+
L2
i

N2

)}
,

σ̃1 =

N∑
i=1

4η2
i + (2 +

N∑
i=1

ηi + L0)2 + 3

N∑
i=1

L2
i

N2
,

σ̂2(α) = max
i

{
pi

(
γi
2
− L2

i

N2αiηi
− 1− αi

αi

Li
N

)}
, σ̃2 =

∑N
i=1 ηi − L0

2
.

We remark that the above result shows the sublinear convergence of NESTT-E to the set of sta-

tionary solutions. Note that γi = ηi − Li/N , to satisfy ci < 0, a simple derivation yields

ηi >
Li

(
(2− αi) +

√
(αi − 2)2 + 8αi

)
2Nαi

.
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Further, the above result characterizes the dependency of the rates on various parameters of the

algorithm. For example, to see the effect of α on the convergence rate, let us set pi = Li∑N
i=1 Li

,

and ηi = 3Li/N , and assume L0 = 0, then consider two different choices of α: α̂i = 1, ∀ i and

α̃i = 4, ∀ i. One can easily check that applying these different choices leads to following results:

C(α̂) = 49
N∑
i=1

Li/N, C(α̃) = 28
N∑
i=1

Li/N.

The key observation is that increasing αi’s reduces the constant in front of the rate. Hence, we

expect that in practice larger αi’s will yield faster convergence.

3.4 Connections and Comparisons with Existing Works

In this section we compare NESTT-G/E with a few existing algorithms in the literature. First,

we present a somewhat surprising observation, that NESTT-G takes the same form as some well-

known algorithms for convex finite-sum problems. To formally state such relation, we show in the

following result that NESTT-G in fact admits a compact primal-only characterization.

Proposition 1 The NESTT-G can be written into the following compact form:

zr+1 = arg min
z

h(z) + g0(z) +
1

2β
‖z − ur+1‖2 (3.21a)

with ur+1 := zr − β
( 1

Nαir
(∇gir(zr)−∇gir(yr−1

ir
)) +

1

N

N∑
i=1

∇gi(yr−1
i )

)
. (3.21b)

Based on this observation, the following comments are in order.

(1) Suppose h ≡ 0, g0 ≡ 0 and αi = 1, pi = 1/N for all i. Then (3.21) takes the same form as the

SAG presented in [118]. Further, when the component functions gi’s are picked cyclically in

a Gauss-Seidel manner, the iteration (3.21) takes the same form as the IAG algorithm [19].

(2) Suppose h 6= 0 and g0 6= 0, and αi = pi = 1/N for all i. Then (3.21) is the same as the SAGA

algorithm [31], which is design for optimizing convex nonsmooth finite sum problems.
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Note that SAG/SAGA/IAG are all designed for convex problems. Through the lens of primal-dual

splitting, our work shows that they can be generalized to nonconvex nonsmooth problems as well.

Secondly, NESTT-E is related to the proximal version of the nonconvex ADMM [64, Algorithm

2]. However, the introduction of αi’s is new, which can significantly improve the practical perfor-

mance but complicates the analysis. Further, there has been no counterpart of the sublinear and

linear convergence rate analysis for the stochastic version of [64, Algorithm 2].

Thirdly, we note that a recent paper [111] has shown that SAGA works for smooth and uncon-

strained nonconvex problem. Suppose that h ≡ 0, g0 6= 0, Li = Lj , ∀ i, j and αi = pi = 1/N , the

authors show that SAGA achieves ε-stationarity using O(N2/3(
∑N

i=1 Li/N)/ε) gradient evaluations.

Compared with GD, which achieves ε-stationarity using O(
∑N

i=1 Li/ε) gradient evaluations in the

worse case (in the sense that
∑N

i=1 Li/N = L), the rate in [111] is O(N1/3) times better. However,

the algorithm in [111] is different from NESTT-G in two aspects: 1) it does not generalize to the

nonsmooth constrained problem (4.1); 2) it samples two component functions at each iteration,

while NESTT-G only samples once. Further, the analysis and the scaling are derived for the case

of uniform Li’s, therefore it is not clear how the algorithm and the rates can be adapted for the

non-uniform case. On the other hand, our NESTT works for the general nonsmooth constrained

setting. The non-uniform sampling used in NESTT-G is well-suited for problems with non-uniform

Li’s, and our scaling can be up to N times better than GD (or its proximal version) in the worst

case. Note that problems with non-uniform Li’s for the component functions are common in ap-

plications such as sparse optimization and signal processing. For example in LASSO problem the

data matrix is often normalized by feature (or “column-normalized” [103]), therefore the `2 norm

of each row of the data matrix (which corresponds to the Lipschitz constant for each component

function) can be dramatically different.

In Table 3.1 we list the comparison of the number of gradient evaluations for NESTT-G and

GD, in the worst case (in the sense that
∑N

i=1 Li/N = L). For simplicity, we omitted an additive

constant of O(N) for computing the initial gradients.
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3.5 Numerical Results

In this section we evaluate the performance of NESTT. Consider the high dimensional regression

problem with noisy observation [90], where M observations are generated by y = Xν + ε. Here

y ∈ RM is the observed data sample; X ∈ RM×P is the covariate matrix; ν ∈ RP is the ground

truth, and ε ∈ RM is the noise. Suppose that the covariate matrix is not perfectly known, i.e., we

observe A = X + W where W ∈ RM×P is the noise matrix with known covariance matrix ΣW .

Let us define Γ̂ := 1/M(A>A)− ΣW , and γ̂ := 1/M(A>y). To estimate the ground truth ν, let us

consider the following (nonconvex) optimization problem posed in [90, problem (2.4)] (where R > 0

controls sparsity):

min
z

z>Γ̂z − γ̂z s.t. ‖z‖1 ≤ R. (3.22)

Due to the existence of noise, Γ̂ is not positive semidefinite hence the problem is not convex. Note

that this problem satisfies Assumption A– B, then by Theorem 5 NESTT-G converges Q-linearly.

To test the performance of the proposed algorithm, we generate the problem following similar

setups as [90]. Let X = (X1; · · · , XN ) ∈ RM×P with
∑

iNi = M and each Xi ∈ RNi×P corresponds

to Ni data points, and it is generated from i.i.d Gaussian. Here Ni represents the size of each mini-

batch of samples. Generate the observations yi = Xi×ν∗+ εi ∈ RNi , where ν∗ is a K-sparse vector

to be estimated, and εi ∈ RNi is the random noise. Let W = [W1; · · · ;WN ], with Wi ∈ RNi×P

generated with i.i.d Gaussian. Therefore we have z>Γ̂z = 1
N

∑N
i=1

N
M z
> (X>i Xi −W>i Wi

)
z. We

set M = 100, 000, P = 5000, N = 50, K = 22 ≈
√
P ,and R = ‖ν∗‖1. We implement NESTT-

G/E, the SGD, and the nonconvex SAGA proposed in [111] with stepsize β = 1
3LmaxN2/3 (with

Lmax := maxi Li). Note that the SAGA proposed in [111] only works for the unconstrained problems

with uniform Li, therefore when applied to (3.22) it is not guaranteed to converge. Here we only

include it for comparison purposes.

In Fig. 3.2 we compare different algorithms in terms of the gap ‖∇̃1/βf(zr)‖2. In the left

figure we consider the problem with Ni = Nj for all i, j, and we show performance of the proposed

algorithms with uniform sampling (i.e., the probability of picking ith block is pi = 1/N). On the
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Figure 3.2: Comparison of NESTT-G/E, SAGA, SGD on problem (3.22)

right one we consider problems in which approximately half of the component functions have twice

the size of Li’s as the rest, and consider the non-uniform sampling (pi =
√
Li/N/

∑N
i=1

√
Li/N).

Clearly in both cases the proposed algorithms perform quite well. Furthermore, it is clear that the

NESTT-E performs well with large α := {αi}Ni=1, which confirms our theoretical rate analysis. Also

it is worth mentioning that when the Ni’s are non-uniform, the proposed algorithms [NESTT-G

and NESTT-E (with α = 10)] significantly outperform SAGA and SGD. In Table 3.2 we further

compare different algorithms when changing the number of component functions (i.e., the number of

mini-batches N) while the rest of the setup is as above. We run each algorithm with 100 passes over

the dataset. Similarly as before, our algorithms perform well, while SAGA seems to be sensitive to

the uniformity of the size of the mini-batch [note that there is no convergence guarantee for SAGA

applied to the nonconvex constrained problem (3.22)].
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3.6 Appendix. Proofs

Some Key Properties of NESTT-G

To facilitate the following derivation, in this section we collect some key properties of NESTT-G.

First, from the optimality condition of the x update we have

xr+1
ir

= zr − 1

αirηir

(
λrir +

1

N
∇gir(zr)

)
, (3.23a)

xr+1
j

(3.6)
= zr

(3.8b)
= zr − 1

αjηj
(λrj +

1

N
∇gj(zr(j))), ∀ j 6= ir. (3.23b)

Then using the update scheme of the λ we can further obtain

λr+1
ir

= − 1

N
∇gir(zr), (3.24a)

λr+1
j = − 1

N
∇gj(zr(j)), ∀ j 6= ir. (3.24b)

Therefore, using the definition of yri we have the following compact forms

λr+1
i = − 1

N
∇gi(yri ), i = 1, · · · , N. (3.25)

xr+1
i = zr − 1

αiηi

(
λri +

1

N
∇gi(yri )

)
, i = 1, · · · , N. (3.26)

Second, let us look at the optimality condition for the z update. The z-update (3.7) is given by

zr+1 = arg min
z

L({xr+1
i }, z;λr)

= arg min
z

N∑
i=1

(
〈λri , xr+1

i − z〉+
ηi
2
‖xr+1

i − z‖2
)

+ g0(z) + h(z). (3.27)

Note that this problem is strongly convex because we have assumed that
∑

i=1 ηi > 3L0; cf.

Assumption [A-(c)].
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Let us define

ur+1 :=

∑N
i=1 ηix

r+1
i +

∑N
i=1 λ

r
i∑N

i=1 ηi

=

∑N
i=1 ηiz

r − ηir(zr − xr+1
ir

)∑N
i=1 ηi

+

∑N
i=1 λ

r
i∑N

i=1 ηi

(3.23a)
=

∑N
i=1 ηiz

r − ηir
αirηir

(λrir + 1/N∇gir(zr))∑N
i=1 ηi

+

∑N
i=1 λ

r
i∑N

i=1 ηi

(5.100)
= zr −

1
αir

(−∇gir(yr−1
ir

) +∇gir(zr))

N
∑N

i=1 ηi
−
∑N

i=1∇gi(y
r−1
i )

N
∑N

i=1 ηi

(i)
= zr − β

Nαir
(−∇gir(yr−1

ir
) +∇gir(zr))−

β
∑N

i=1∇gi(y
r−1
i )

N
(3.28)

(ii)
: = zr − βvr+1

ir
(3.29)

where in (i) we have defined β := 1/
∑N

i=1 ηi; in (ii) we have defined

vr+1
ir

:=
1

N

N∑
i=1

∇gi(yr−1
i ) +

1

αir

(
− 1

N
∇gir(yr−1

ir
) +

1

N
∇gir(zr)

)
. (3.30)

Clearly if we pick αi = pi for all i, then we have

Eir [ur+1 | Fr] = zr − β

N

N∑
i=1

∇gi(zr). (3.31)

Using the definition of ur+1, it is easy to check that

zr+1 = arg min
z

1

2β
‖z − ur+1‖2 + h(z) + g0(z) = prox

1/β
h [ur+1 − β∇g0(zr+1)]. (3.32)

The optimality condition for the z subproblem is given by:

zr+1 − ur+1 + β∇g0(zr+1) + βξr+1 = 0 (3.33)

where, ξr+1 ∈ ∂h(zr+1) is a subgradient of h(zr+1). Using the definition of vir in (5.107), we obtain

zr+1 = zr − β(vr+1
ir

+∇g0(zr+1) + ξr+1). (3.34)
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Third, if αi = pi, then we have:

Eir

∥∥∥∥∥−λrir + 1/N∇gir(zr)
αir

+
1

N

N∑
i=1

∇gi(zr)−
N∑
i=1

1

N
∇gi(yr−1

i )

∥∥∥∥∥
2


(a)
= Var

[
−
λrir + 1/N∇gir(zr)

αir

]
(b)

≤
N∑
i=1

1

αi

∥∥∥∥ 1

N
∇gi(zr)−

1

N
∇gi(yr−1

i )

∥∥∥∥2

, (3.35)

where (a) is true because whenever αi = pi for all i, then

Eir
[
−
λrir + 1/N∇gir(zr)

αir

]
=

1

N

N∑
i=1

∇gi(zr)−
N∑
i=1

1

N
∇gi(yr−1

i );

The inequality in (b) is true because for a random variable x we have Var(x) ≤ E[x2].

3.6.1 Proof of Lemma 6

Step 1). Using the definition of potential function Qr, we have:

E[Qr −Qr−1 | Fr−1]

= E

[
N∑
i=1

1

N

(
gi(z

r)− gi(zr−1)
)

+ g0(zr)− g0(zr−1) + h(zr)− h(zr−1) | Fr−1

]

+ E

[
N∑
i=1

3pi
α2
i ηi

∥∥∥∥ 1

N
∇gi(zr)−

1

N
∇gi(yr−1

i )

∥∥∥∥2

− 3pi
α2
i ηi

∥∥∥∥ 1

N
∇gi(zr−1)− 1

N
∇gi(yr−2

i )

∥∥∥∥2

| Fr−1

]
.

(3.36)
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Step 2). The first term in (5.116) can be bounded as follows (omitting the subscript Fr).

E

[
N∑
i=1

1

N

(
gi(z

r)− gi(zr−1)
)

+ g0(zr)− g0(zr−1) + h(zr)− h(zr−1) | Fr−1

]
(i)

≤ E
[

1

N

N∑
i=1

〈∇gi(zr−1), zr − zr−1〉+ 〈∇g0(zr−1), zr − zr−1〉

+ 〈ξr, zr − zr−1〉+

∑N
i=1 Li/N + L0

2
‖zr − zr−1‖2 | Fr−1

]
(ii)
= E

[〈
1

N

N∑
i=1

∇gi(zr−1) + ξr +∇g0(zr) +
1

β
(zr − zr−1), zr − zr−1

〉
| Fr−1

]

−

(
1

β
−
∑N

i=1 Li/N + 3L0

2

)
Ezr‖zr − zr−1‖2

(3.34)
= E

[〈
1

N

N∑
i=1

∇gi(zr−1)− vri(r−1), z
r − zr−1

〉
| Fr−1

]

−

(
1

β
−
∑N

i=1 Li/N + 3L0

2

)
Ezr‖zr − zr−1‖2

(iii)

≤ 1

2`1
E

∥∥∥∥∥1/N

N∑
i=1

∇gi(zr−1)− vri(r−1)

∥∥∥∥∥
2

| Fr−1

+
`1
2
Ezr‖zr − zr−1‖2

−

(
1

β
−
∑N

i=1 Li/N + 3L0

2

)
Ezr‖zr − zr−1‖2 (3.37)

where in (i) we have used the Lipschitz continuity of the gradients of gi’s as well as the convexity

of h; in (ii) we have used the fact that

〈∇g0(zr−1), zr − zr−1〉 ≤ 〈∇g0(zr), zr − zr−1〉+ L0‖zr − zr−1‖2; (3.38)

in (iii) we have applied the Young’s inequality for some `1 > 0.

Choosing `1 = 1
2β , we have:

1

2`1
E

∥∥∥∥∥ 1

N

N∑
i=1

∇gi(zr−1)− vri(r−1)

∥∥∥∥∥
2

(5.107)
= βE

∥∥∥∥∥ 1

N

N∑
i=1

∇gi(zr−1)−
λr−1
i(r−1) + 1/N∇gi(r−1)(z

r−1)

αi(r−1)
−

N∑
i=1

1

N
∇gi(yr−2

i )

∥∥∥∥∥
2


(3.35)

≤ β

N∑
i=1

1

αi

∥∥∥∥ 1

N
∇gi(zr−1)− 1

N
∇gi(yr−2

i )

∥∥∥∥2

.
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Overall we have the following bound for the first term in (5.116):

E

[
N∑
i=1

1

N

(
gi(z

r)− gi(zr−1)
)

+ g0(zr)− g0(zr−1) + h(zr)− h(zr−1) | Fr−1

]
(3.39)

≤
N∑
i=1

β

αi

∥∥∥∥ 1

N
∇gi(zr−1)− 1

N
∇gi(yr−2

i )

∥∥∥∥2

−

(
3

4β
−
∑N

i=1 Li/N + 3L0

2

)
Ezr‖zr − zr−1‖2.

Step 3). We bound the second term in (5.116) in the following way:

E
[
‖∇gi(zr)−∇gi(yr−1

i )‖2 | Fr−1
]

= E
[
‖∇gi(zr)−∇gi(yr−1

i ) +∇gi(zr−1)−∇gi(zr−1)‖2 | Fr−1
]

(i)

≤ (1 + ξi)Ezr‖∇gi(zr)−∇gi(zr−1)‖2 +

(
1 +

1

ξi

)
Eyr−1

i
‖∇gi(yr−1

i )−∇gi(zr−1)‖2

(ii)
= (1 + ξi)Ezr‖∇gi(zr)−∇gi(zr−1)‖2 + (1− pi)

(
1 +

1

ξi

)
‖∇gi(yr−2

i )−∇gi(zr−1)‖2 (3.40)

where in (i) we have used the fact that the randomness of zr−1 comes from ir−2, so fixing Fr−1,

zr−1 is deterministic; we have also applied the following inequality:

(a+ b)2 ≤ (1 + ξ)a2 + (1 +
1

ξ
)b2 ∀ ξ > 0.

The equality (ii) is true because the randomness of yr−1
i comes from ir−1, and for each i there is a

probability pi such that xri is updated, so that ∇gi(yr−1
i ) = ∇gi(zr−1), otherwise xi is not updated

so that ∇gi(yr−1
i ) = ∇gi(yr−2

i ).

Step 4). Applying (3.40) and set αi = pi, the second part of (5.116) can be bounded as

E

[
N∑
i=1

3pi
α2
i ηi

∥∥∥∥ 1

N
∇gi(zr)−

1

N
∇gi(yr−1

i )

∥∥∥∥2

− 3pi
α2
i ηi

∥∥∥∥ 1

N
∇gi(zr−1)− 1

N
∇gi(yr−2

i )

∥∥∥∥2

| Fr−1

]

≤
N∑
i=1

3L2
i

αiηiN2
(1 + ξi)Ezr‖zr − zr−1‖2

+
3

αiηi

(
(1− pi)(1 +

1

ξi
)− 1

)∥∥∥∥ 1

N
∇gi(yr−2

i )− 1

N
∇gi(zr−1)

∥∥∥∥2

. (3.41)
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Combining (5.117) and (5.120) eventually we have

E[Qr −Qr−1 | Fr]

≤
N∑
i=1

{
β

αi
+

3

αiηi

(
(1− pi)(1 +

1

ξi
)− 1

)}∥∥∥∥ 1

N
∇gi(zr−1)− 1

N
∇gi(yr−2

i )

∥∥∥∥2

+

{
− 3

4β
+

∑N
i=1 Li/N + 3L0

2
+

N∑
i=1

3L2
i

αiηiN2
(1 + ξi)

}
Ezr‖zr − zr−1‖2. (3.42)

Let us define {c̃i} and ĉ as following:

c̃i =
β

αi
+

3

αiηi

(
(1− pi)(1 +

1

ξi
)− 1

)
ĉ = − 3

4β
+

∑N
i=1 Li/N + 3L0

2
+

N∑
i=1

3L2
i

αiηiN2
(1 + ξi) .

In order to prove the lemma it is enough to show that c̃i < − 1
2ηi
∀ i, and ĉ < −

∑N
i=1

ηi
8 . Let us

pick

αi = pi, ξi =
2

pi
, pi =

ηi∑N
i=1 ηi

. (3.43)

Recall that β = 1∑N
i=1 ηi

.These values yield the following

c̃i =
1

ηi
− 3

ηi

(
pi + 1

2

)
≤ 1

ηi
− 3

2ηi
= − 1

2ηi
< 0.

To show that ĉ ≤ −
∑N

i=1
ηi
8 let us assume that ηi = diLi for some di > 0. Note that by assumption

we have
N∑
i=1

ηi ≥ 3L0.

Therefore we have the following expression for ĉ:

ĉ ≤ −
N∑
i=1

1

4
diLi +

Li
2N

+
3Li

pidiN2

(
1 +

2

pi

)
<

N∑
i=1

Li
di

(
−1

4
d2
i +

di
2N

+
9

p2
iN

2

)
.

As a result, to have ĉ < −
∑N

i=1
ηi
8 , we need

Li
di

(
1

4
d2
i −

di
2N
− 9

p2
iN

2

)
≥ diLi

8
, ∀ i. (3.44)
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Or equivalently

1

8
d2
i −

di
2N
− 9

p2
iN

2
≥ 0, ∀ i. (3.45)

By finding the root of the above quadratic inequality, we need di ≥ 9
Npi

, which is equivalent to

choosing the following parameters

ηi ≥
9Li
Npi

. (3.46)

The lemma is proved. Q.E.D.

3.6.2 Proof of Theorem 4

First, using the fact that f(z) is lower bounded [cf. Assumption A-(a)], it is easy to verify that

{Qr} is a bounded sequence. Denote its lower bound to be Q. From Lemma 6, it is clear that

{Qr −Q} is a nonnegative supermartingale. Apply the Supermartigale Convergence Theorem [15,

Proposition 4.2] we conclude that {Qr} converges almost surely (a.s.), and that

∥∥∇gi(zr−1)−∇gi(yr−2
i )

∥∥2 → 0, Ezr‖zr − zr−1‖ → 0, a.s., ∀ i. (3.47)

The first inequality implies that ‖λrir − λr−1
ir
‖ → 0. Combining this with equation (3.5) yields

‖xrir − z
r−1‖ → 0, which further implies that ‖zr − zr−1‖ → 0. By utilizing (3.8b) – (3.8c), we can

conclude that

‖xri − xr−1
i ‖ → 0, ‖λri − λr−1

i ‖ → 0, a.s., ∀ i. (3.48)

That is, almost surely the successive differences of all the primal and dual variables go to zero.

Then it is easy to show that every limit point of the sequence (xr, zr, λr) converge to a stationary

solution of problem (3.2) (for example, see the argument in [64, Theorem 2.1]. Here we omit the

full proof.
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Part 1). We bound the gap in the following way (where the expectation is taking over the

nature history of the algorithm):

E
[
‖zr − prox

1/β
h [zr − β∇(g(zr) + g0(zr))]‖2

]
(a)
= E

[
‖zr − zr+1 + prox

1/β
h [ur+1 − β∇g0(zr+1)]− prox

1/β
h [zr − β∇(g(zr) + g0(zr))]‖2

]
(b)

≤ 3E‖zr − zr+1‖2 + 3E‖ur+1 − zr + β∇g(zr)‖2 + 3L2
0β

2‖zr+1 − zr‖2

(c)

≤ 10

3
E‖zr − zr+1‖2 + 3β2E

[
‖∇g(zr)−

λrir + 1/N∇gir(zr)
αir

−
N∑
i=1

1/N∇gi(yr−1
i )‖2

]
(3.35)

≤ 10

3
E‖zr − zr+1‖2 + 3β2

N∑
i=1

1

αi
E
∥∥∥∥ 1

N
∇gi(zr)−

1

N
∇gi(yr−1

i )

∥∥∥∥2

≤ 10

3
E‖zr − zr+1‖2 + 3

N∑
i=1

β

ηi
E
∥∥∥∥ 1

N
∇gi(zr)−

1

N
∇gi(yr−1

i )

∥∥∥∥2

(3.49)

where (a) is due to (3.32); (b) is true due to the nonexpansivness of the prox operator, and the

Cauchy-Swartz inequality; in (c) we have used the definition of u in (5.108) and the fact that

3L0 ≤
∑N

i=1 ηi = 1
β [cf. Assumption A-(c)]. In the last inequality we have applied (3.43), which

implies that

β

αi
=

1

pi
∑N

j=1 ηj
=

1

ηi
. (3.50)

Note that ηi’s has to satisfy (3.46). Let us follow (3.11) and choose

ηi =
9Li
piN

=
9
∑N

j=1 ηj

Nηi
Li.

We have

ηi =

√√√√9Li/N
N∑
j=1

ηj =
√

9Li/N

√√√√ N∑
j=1

ηj (3.51)

Summing i from 1 to N we have √√√√ N∑
i=1

ηi =

N∑
i=1

√
9Li/N (3.52)

Then we conclude that

1

β
=

N∑
i=1

ηi =

(
N∑
i=1

√
9Li/N

)2

. (3.53)
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So plugging the expression of β into (3.50) and (3.51), we conclude

αi = pi =

√
Li/N∑N

i=1

√
Li/N

, ηi =
√

9Li/N
N∑
j=1

√
9Lj/N. (3.54)

After plugging in the above inequity into (3.13), we obtain:

E[Gr]
(5.126)

≤ 10

3β2
E‖zr − zr+1‖2 +

N∑
i=1

3

βηi
E
∥∥∥∥ 1

N
∇gi(zr)−

1

N
∇gi(yr−1

i )

∥∥∥∥2

(3.55)

(3.12)

≤ 80

3β
E[Qr −Qr+1] =

80

3

(
N∑
i=1

√
Li/N

)2

E[Qr −Qr+1]

If we sum both sides over r = 1, · · · , R, we obtain:

R∑
r=1

E[Gr] ≤ 80

3

(
N∑
i=1

√
Li/N

)2

E[Q1 −QR+1].

Using the definition of zm, we have

E[Gm] = EFr [Em[Gm | Fr]] = 1/R
R∑
r=1

EFr [Gr].

Therefore, we can finally conclude that:

E[Gm] ≤ 80

3

(
N∑
i=1

√
Li/N

)2
E[Q1 −QR+1]

R
(3.56)

which proves the first part.

Part 2). In order to prove the second part let us recycle inequality in (3.55) and write

E

[
Gr +

N∑
i=1

3

βηi

∥∥∥∥ 1

N
∇gi(zr)−

1

N
∇gi(yr−1

i )

∥∥∥∥2
]

≤ 10

3β2
E‖zr+1 − zr‖2 +

N∑
i=1

6

βηi
E
∥∥∥∥ 1

N
∇gi(zr)−

1

N
∇gi(yr−1

i )

∥∥∥∥2

≤ 80

3β
E[Qr −Qr+1] = 48

(
N∑
i=1

√
Li/N

)2

E[Qr −Qr+1].

Also note that

Exr
[∥∥xr+1

i − zr
∥∥2 | Fr

]
=

N∑
i=1

1

αiη2
i

∥∥∥∥ 1

N
∇gi(zr)−

1

N
∇gi(yr−1

i )

∥∥∥∥2

(3.57)
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Combining the above two inequalities, we conclude

EFr [Gr] + EFr
[
N∑
i=1

3η2
i

∥∥xr+1
i − zr

∥∥2

]

= EFr [Gr] + EFr
[
N∑
i=1

3ηiαi
β

∥∥xr+1
i − zr

∥∥2

]

= E

[
Gr +

N∑
i=1

3

βηi

∥∥∥∥ 1

N
∇gi(zr)−

1

N
∇gi(yr−1

i )

∥∥∥∥2
]

≤ 80

3

(
N∑
i=1

√
Li/N

)2

EFr [Qr −Qr+1] (3.58)

where in the first equality we have used the relation αi
β = ηi [cf. (3.50)]. Using a similar argument

as in first part, we conclude that

E[Gm] + E

[
N∑
i=1

3η2
i

∥∥xmi − zm−1
∥∥2

]
≤ 80

3

(
N∑
i=1

√
Li/N

)2
E[Q1 −QR+1]

R
. (3.59)

This completes the proof. Q.E.D.

3.6.3 Proof of Theorem 5

We first need the following lemma, which characterizes certain error bound condition around

the stationary solution set.

Lemma 7 Suppose Assumptions A and B hold. Let Z∗ denotes the set of stationary solutions of

problem (4.1), and dist (z, Z∗) := minu∈Z∗ ‖z − u‖. Then we have the following

1. (Error Bound Condition) For any ξ ≥ minz f(z), exists a positive scalar τ such that the

following error bound holds

dist (z, Z∗) ≤ τ‖∇̃1/βf(z)‖ (3.60)

for all z ∈ (Z ∩ dom h) and z ∈ {z : f(z) ≤ ξ}.

2. (Separation of Isocost Surfaces) There exists a scalar δ > 0 such that

‖z − v‖ ≥ δ whenever z ∈ Z∗, v ∈ Z∗, f(z) 6= f(v). (3.61)
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The first statement holds true largely due to [132, Theorem 4], and the second statement holds true

due to [93, Lemma 3.1]; see detailed discussion after [132, Assumption 2]. Here the only difference

with the statement [132, Theorem 4] is that the error bound condition (3.60) holds true globally.

This is by the assumption that Z is a compact set. Below we provide a brief argument.

From [R3, Theorem 4], we know that when Assumption B is satisfied, we have that for any

ξ ≥ minz f(z), there exists scalars τ and ε such that the following error bound holds

dist (z, Z∗) ≤ τ‖∇̃1/βf(z)‖, whenever ‖∇̃1/βf(z)‖ ≤ ε, f(z) ≤ ξ. (3.62)

To argue that when Z is compact, the above error bound is independent of ε, we use the following

two steps: (1) for all z ∈ Z ∩ dom(h) such that ‖∇̃1/βf(z)‖ ≤ δ, it is clear that the error bound

(3.60) holds true; (2) for all z ∈ Z ∩ dom(h) such that ‖∇̃1/βf(z)‖ ≥ δ, the ratio dist (z,Z∗)

‖∇̃1/βf(z)‖ is a

continuous function and well defined over the compact set Z ∩ dom(h) ∩
{
z | ‖∇̃1/βf(z)‖ ≥ δ

}
.

Thus, the above ratio must be bounded from above by a constant τ ′ (independent of b, and no

greater than maxz,z′∈Z ‖z − z′‖/δ). Combining (1) and (2) yields the desired error bound over the

set Z ∩ dom(h). Q.E.D.

Proof of Theorem 5

From Theorem 4 we know that (xr, zr, λr) converges to the set of stationary solutions of problem

(3.2). Let (x∗, z∗, λ∗) be one of such stationary solution. Then by the definition of the Q function

and the fact that the successive differences of the gradients goes to zero (cf. (3.47)), we have

Q∗ = f(z∗) =

N∑
i=1

1/Ngi(z
∗) + g0(z∗) + p(z∗). (3.63)

Then by Lemma 7 - (2) we know that f(zr) =
∑N

i=1 1/Ngi(z
r)+g0(zr)+p(zr) will finally settle

at some isocost surface of f , i.e., there exists some finite r̄ > 0 such that for all r > r̄ and v̄ ∈ R

such that

f(z̄r) = v̄, ∀ r ≥ r̄ (3.64)
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where z̄r = arg minz∈Z∗ ‖zr−z‖. Therefore, combining the fact that ‖xr+1−xr‖ → 0, ‖zr+1−zr‖ →

0, ‖xr+1
i − zr+1‖ → 0 and ‖λr+1 − λr‖ → 0 (cf. (3.87), (3.88)), it is easy to see that

L(z̄r, x̄r, λ̄r) = f(z̄r) = v̄, ∀ r ≥ r̄, (3.65)

where x̄r, λ̄r are defined similarly as z̄r.

Now we prove that the expectation of ∆r+1 := Qr+1− v̄ diminishes Q-linearly. All the expecta-

tion below is w.r.t. the natural history of the algorithm. The proof consists of the following steps:

Step 1: There exists σ1 > 0 such that

E[Qr −Qr+1] ≥ σ1

(
E‖zr+1 − zr‖2 +

N∑
i=1

E‖1/N∇gi(zr)− 1/N∇gi(yr−1
i )‖2

)
;

Step 2: There exists τ > 0 such that

E‖zr − z̄r‖2 ≤ τ‖E[∇1/β f̃(zr)]‖2;

Step 3: There exists σ2 > 0 such that

‖E[∇1/β f̃(zr)]‖2 ≤ σ2

(
E‖zr+1 − zr‖2 +

N∑
i=1

E‖1/N∇gi(zr)− 1/N∇gi(yr−1
i )‖2

)
;

Step 4: There exists σ3 > 0 such that the following relation holds true for all r ≥ r̄

E[Qr+1 − v̄] ≤ σ3

(
E‖zr − z̄r‖2 + E‖zr+1 − zr‖2 +

N∑
i=1

E‖1/N∇gi(zr)− 1/N∇gi(yr−1
i )‖2

)
.

These steps will be verified one by one shortly. But let us suppose that they all hold true. Below

we show that linear convergence can be obtained.

Combining step 4 and step 2 we conclude that there exists σ3 > 0 such that for all r ≥ r̄

E[Qr+1 − v̄] ≤ σ3

(
τ‖E[∇1/β f̃(zr−1)]‖2 + E‖zr+1 − zr‖2 +

N∑
i=1

E‖1/N∇gi(zr)− 1/N∇gi(yr−1
i )‖2

)
.

Then if we bound ‖E(Gr)‖2 using step 3, we can simply make a σ4 > 0 such that

E[Qr+1 − v̄] ≤ σ4

(
E‖zr+1 − zr‖2 +

N∑
i=1

E‖1/N∇gi(zr)− 1/N∇gi(yr−1
i )‖2

)
.
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Finally, applying step 1 we reach the following bound for E[Qr+1 − v̄]:

E[Qr+1 − v̄] ≤ σ4

σ1
E[Qr −Qr+1], ∀ r ≥ r̄,

which further implies that for σ5 = σ4
σ1
> 0, we have

E[∆r+1] ≤ σ5

1 + σ5
E[∆r], ∀ r ≥ r̄.

Now let us verify the correctness of each step. Step 1 can be directly obtained from equation

(3.12). Step 2 is exactly Lemma (7). Step 3 can be verified using a similar derivation as in (5.126)2.

Below let us prove the step 4, which is a bit involved. From (3.7) we know that

zr+1 = arg min
z
h(z) + g0(z) +

N∑
i=1

〈λri , xr+1
i − z〉+

ηi
2
‖xr+1

i − z‖2.

This implies that

h(zr+1) + g0(zr+1) +
N∑
i=1

〈λri , xr+1
i − zr+1〉+

ηi
2
‖xr+1

i − zr+1‖2

≤ h(z̄r) + g0(z̄r) +
N∑
i=1

〈λri , xr+1
i − z̄r〉+

ηi
2
‖xr+1

i − z̄r‖2. (3.66)

Rearranging the terms, we obtain

h(zr+1) + g0(zr+1)− h(z̄r)− g0(z̄r) ≤
N∑
i=1

〈λri , zr+1 − z̄r〉+
ηi
2
‖xr+1

i − z̄r‖2.

Using this inequality we have:

Qr+1 − v̄ ≤
N∑
i=1

1/N
(
gi(z

r+1)− gi(z̄r)
)

+ 〈λri , zr+1 − z̄r〉

+

N∑
i=1

ηi
2
‖xr+1

i − z̄r‖2 + ‖1/N(∇gi(zr)−∇gi(yr−1
i )‖2. (3.67)

2We simply need to replace −zr−1 + prox
1/β
h [ur−1 − β∇g0(zr−1)] in step (a) of (5.126) by −zr + prox

1/β
h [ur −

β∇g0(zr)] and using the same derivation.
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The first term in RHS can be bounded as follows:

N∑
i=1

1/N
(
gi(z

r+1)− gi(z̄r)
)

(a)

≤
N∑
i=1

1/N〈∇gi(z̄r), zr+1 − z̄r〉+ Li/2N‖zr+1 − z̄r‖2

≤
N∑
i=1

1/N〈∇gi(z̄r) +∇gi(zr+1)−∇gi(zr+1), zr+1 − z̄r〉+ Li/2N‖zr+1 − z̄r‖2

(b)

≤
N∑
i=1

1/N〈∇gi(zr+1), zr+1 − z̄r〉+ 3Li/2N‖zr+1 − z̄r‖2,

where (a) is true due to the descent lemma; and (b) comes from the Lipschitz continuity of the ∇gi.

Plugging the above bound into (3.67), we further have:

Qr+1 − v̄ ≤
N∑
i=1

1/N〈∇gi(zr+1)−∇gi(yr−1
i ), zr+1 − z̄r〉+ 3Li/2N‖zr+1 − z̄r‖2

+
ηi
2
‖xr+1

i − z̄r‖2 + ‖1/N(∇gi(zr)−∇gi(yr−1
i )‖2

=

N∑
i=1

1/N〈∇gi(zr+1) +∇gi(zr)−∇gi(zr)−∇gi(yr−1
i ), zr+1 − z̄r〉

+
ηi
2
‖xr+1

i − z̄r‖2 + ‖1/N(∇gi(zr)−∇gi(yr−1
i )‖2 + 3Li/2N‖zr+1 − z̄r‖2,

where in the first inequality we have used the fact that λri = − 1
N∇gi(y

r−1
i ); cf . (5.100). Applying

the Cauchy-Schwartz inequality we further have:

Qr+1 − v̄ ≤
N∑
i=1

1/2‖1/N
(
∇gi(zr+1) +∇gi(zr)

)
‖2 + 1/2‖zr+1 − z̄r‖2

+

N∑
i=1

1/2‖1/N
(
∇gi(zr)−∇gi(yr−1

i )
)
‖2 + 1/2‖zr+1 − z̄r‖2

+
ηi
2
‖xr+1

i − z̄r‖2 + ‖1/N(∇gi(zr)−∇gi(yr−1
i )‖2 + 3Li/2N‖zr+1 − z̄r‖2

≤
N∑
i=1

[
L2
i

2N2
‖zr+1 − zr‖2 +

3

2N2
‖gi(zr)−∇gi(yr−1

i )‖2 +
ηi
2
‖xr+1

i − z̄r‖2
]

+ (1 + 3Li/2N) ‖zr+1 − z̄r‖2. (3.68)
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Now let us bound
∑N

i=1
ηi
2 ‖x

r+1
i − z̄r‖2 in the above inequality:

N∑
i=1

ηi
2
‖xr+1

i − z̄r‖2 =

N∑
i=1

ηi
2
‖xr+1

i − zr+1 + zr+1 − z̄r‖2

≤
N∑
i=1

ηi‖xr+1
i − zr+1‖2 + ηi‖zr+1 − z̄r‖2

=
N∑
i=1

ηi‖xr+1
i − zr + zr − zr+1‖2 + ηi‖zr+1 − z̄r‖2

≤
N∑
i=1

2ηi‖xr+1
i − zr‖2 + 2ηi‖zr − zr+1‖2 + ηi‖zr+1 − z̄r‖2.

Using the fact that xr+1
i = zr when i 6= ir we further have:

N∑
i=1

ηi
2
‖xr+1

i − z̄r‖2 ≤ 2ηir‖xr+1
ir
− zr‖2 +

N∑
i=1

2ηi‖zr − zr+1‖2 + ηi‖zr+1 − z̄r‖2

=
2

α2
ir
ηir
‖λir + 1/N∇gir(zr)‖2 +

N∑
i=1

2ηi‖zr − zr+1‖2 + ηi‖zr+1 − z̄r‖2

=
2

α2
ir
ηirN

2
‖∇gir(zr)−∇gir(yr−1

ir
)‖2

+
N∑
i=1

2ηi‖zr − zr+1‖2 + ηi‖zr+1 − zr + zr − z̄r‖2

≤ 2

α2
ir
ηirN

2
‖∇gir(zr)−∇gir(yr−1

ir
)‖2

+
N∑
i=1

4ηi‖zr − zr+1‖2 + 2ηi‖zr − z̄r‖2. (3.69)

Take expectation on both sides of the above equation and set pi = αi, we obtain:

N∑
i=1

ηi
2
E‖xr+1

i − z̄r‖2 ≤
N∑
i=1

2

αiηi
E‖∇gi(zr)−∇gi(yr−1

i )‖2

+

N∑
i=1

4ηiE‖zr − zr+1‖2 + 2ηiE‖zr − z̄r‖2.

Combining equations (3.68) and (3.69), eventually one can find σ3 > 0 such that

E[Qr+1 − v̄] ≤ σ3

(
E‖zr − z̄‖2 + E‖zr+1 − zr‖2 +

N∑
i=1

E‖1/N∇gi(zr)− 1/N∇gi(yr−1
i )‖2

)
,

which completes the proof of Step 4.
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In summary, we have shown that Step 1 - 4 all hold true. Therefore we have shown that the

NESTT-G converges Q-linearly. Q.E.D.

Some Key Properties of NESTT-E

To facilitate the following derivation, in this section we collect some key properties of NESTT-E.

First, for i = ir, using the optimality condition for xi update step (3.16) we have the following

identity:

1

N
∇gir(xr+1

ir
) + λrir + αirηir(x

r+1
ir
− zr+1) = 0. (3.70)

Combined with the dual variable update step (3.17) we obtain

1

N
∇gir(xr+1

ir
) = −λr+1

ir
. (3.71)

Second, the optimality condition for the z-update is given by:

zr+1 = proxh
[
zr+1 −∇z(L(xr, z, λr)− h(z))

]
(3.72)

= proxh

[
zr+1 −

N∑
i=1

ηi

(
zr+1 − xri −

λri
ηi

)
−∇g0(zr+1)

]
. (3.73)

3.6.4 Proof of Theorem 6

To prove this result, we need a few lemmas.

For notational simplicity, define new variables {x̂r+1
i }, {λ̂r+1

i } by

x̂r+1
i := arg min

xi
Ui(xi, z

r+1, λri ), λ̂r+1
i := λri + αiηi

(
x̂r+1
i − zr+1

)
, ∀i. (3.74)

These variables are the virtual variables generated by updating all variables at iteration r+ 1. Also

define:

Lr := L(xr, zr;λr), w := (x, z, λ), β :=
1∑N
i=1 ηi

, ci :=
L2
i

αiηiN2
− γi

2
+

1− αi
αi

Li
N

First, we need the following lemma to show that the size of the successive difference of the dual

variables can be upper bounded by that of the primal variables. This is a simple consequence of

(3.71); also see [R2, Lemma 2.1]. We include the proof for completeness.
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Lemma 8 Suppose assumption A holds. Then for NESTT-E algorithm, the following are true:

‖λr+1
i − λri ‖2 ≤

L2
i

N2
‖xr+1

i − xri ‖2, ‖λ̂r+1
i − λri ‖2 ≤

L2
i

N2
‖x̂r+1

i − xri ‖2, ∀ i. (3.75a)

Proof. We only show the first inequality. The second one follows an analogous argument.

To prove (3.75a), first note that the case for i 6= ir is trivial, as both sides of (3.75a) are zero.

For the index ir, we have a closed-form expression for λrir following (3.71). Notice that for any

given i, the primal-dual pair (xi, λi) is always updated at the same iteration. Therefore, if for each

i we choose the initial solutions in a way such that λ0
i = −∇gi(x0

i ), then we have

1

N
∇gi(xr+1

i ) = −λr+1
i ∀ i = 1, 2, · · ·N. (3.76)

Combining (3.76) with Assumption A-(a) yields the following:

‖λr+1
i − λri ‖ =

1

N
‖∇gi(xr+1

i )−∇gi(xri )‖ ≤
Li
N
‖xr+1

i − xri ‖.

The proof is complete. Q.E.D.

Second, we bound the successive difference of the potential function.

Lemma 9 Suppose Assumption A holds true. Then the following holds for NESTT-E

E[Lr+1 − Lr|xr, zr] ≤ −γz
2
‖zr+1 − zr‖2 +

N∑
i=1

pici‖xri − x̂r+1
i ‖2. (3.77)

Proof. First let us split Lr+1 − Lr in the following way:

Lr+1 − Lr = Lr+1 − L(xr+1, zr+1;λr) + L(xr+1, zr+1;λr)− Lr. (3.78)

The first two terms in (3.78) can be bounded by

Lr+1 − L(xr+1, zr+1;λr) =

N∑
i=1

〈λr+1
i − λri , xr+1

i − zr+1〉

(a)
=

1

αirηir
‖λr+1

ir
− λrir‖

2
(b)

≤
L2
ir

N2αirηir
‖xr+1

ir
− xrir‖

2 (3.79)

where in (a) we have used (3.17), and the fact that λr+1
i −λri = 0 for all variable blocks except irth

block; (b) is true because of Lemma 8.
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The last two terms in (3.78) can be written in the following way:

L({xr+1
i }, zr+1;λr)− Lr = L(xr+1, zr+1;λr)− L(xr, zr+1;λr) + L(xr, zr+1;λr)− Lr. (3.80)

The first two terms in (3.80) characterizes the change of the Augmented Lagrangian before and

after the update of x. Note that x updates do not directly optimize the augmented Lagrangian.

Therefore the characterization of this step is a bit involved. We have the following:

L(xr+1, zr+1;λr)− L(xr, zr+1;λr)

(a)

≤
N∑
i=1

(〈
∇iL(xr+1, zr+1;λr), xr+1

i − xri
〉
− γi

2
‖xr+1

i − xri ‖2
)

(b)
=
〈
∇irL(xr+1, zr+1;λr), xr+1

ir
− xrir

〉
− γir

2
‖xr+1

ir
− xrir‖

2

(c)
=
〈
ηir(1− αir)(xr+1

ir
− zr+1), xr+1

ir
− xrir

〉
− γir

2
‖xr+1

ir
− xrir‖

2

(d)
=

〈
1− αir
αir

(λr+1
ir
− λrir), x

r+1
ir
− xrir

〉
− γir

2
‖xr+1

ir
− xrir‖

2

≤ 1− αir
αir

(
1

2Lir/N
‖λr+1

ir
− λrir‖

2 +
Lir
2N
‖xr+1

ir
− xrir‖

2

)
− γir

2
‖xr+1

ir
− xrir‖

2

(e)

≤ 1− αir
αir

Lir
N
‖xr+1

ir
− xrir‖

2 − γir
2
‖xr+1

ir
− xrir‖

2 (3.81)

where

• (a) is true because L(x, z, λ) is strongly convex with respect to xi.

• (b) is true because when i 6= ir, we have xr+1
i = xri .

• (c) is true because xr+1
ir

is optimal solution for the problem minUir(xir , z
r+1, λrir) (satisfying

(3.70)), and we have used the optimality of such xr+1
ir

.

• (d) and (e) are due to Lemma 8.

Similarly, the last two terms in (3.80) can be bounded using equation (3.70) and the strong

convexity of function L with respect to the variable z. Therefor We have:

L(xr, zr+1, λr)− Lr ≤ −γz
2
‖zr+1 − zr‖2. (3.82)
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Combining equations (3.79), (3.81) and (3.82), eventually we have:

Lr+1 − L(xr, zr+1, λr) ≤ cir‖xrir − x
r+1
ir
‖2 (3.83)

Lr+1 − Lr ≤ −γz
2
‖zr+1 − zr‖2 + cir‖xrir − x

r+1
ir
‖2 (3.84)

Taking expectation on both side of this inequality with respect to ir, we can conclude that:

E[Lr+1 − Lr | zr, xr] ≤ −γz
2
‖zr+1 − zr‖2 +

N∑
i=1

pici‖xri − x̂r+1
i ‖2 (3.85)

where pi is the probability of picking ith block. The lemma is proved. Q.E.D.

Lemma 10 Suppose that Assumption A is satisfied, then Lr ≥ f .

Proof. Using the definition of the augmented Lagrangian function we have:

Lr+1 =
N∑
i=1

(
1

N
gi(x

r+1
i ) + 〈λr+1

i , xr+1
i − zr+1〉+

ηi
2
‖xr+1

i − zr+1‖2
)

+ g0(zr+1) + p(zr+1)

(a)
=

N∑
i=1

(
1

N
gi(x

r+1
i ) +

1

N
〈∇gi(xr+1

i ), zr+1 − xr+1
i 〉+

ηi
2
‖xr+1

i − zr+1‖2
)

+ g0(zr+1) + p(zr+1)

(b)

≥
N∑
i=1

1

N
gi(z

r+1) +

(
ηi
2
− Li

2N

)
‖zr+1 − xr+1

i ‖2 + g0(zr+1) + p(zr+1)

(c)

≥
N∑
i=1

1

N
gi(z

r+1) + g0(zr+1) + p(zr+1) ≥ f (3.86)

where (a) is true because of equation (3.71); (b) follows Assumption A-(b); (c) follows Assumption

A-(d). The desired result is proven. Q.E.D.

Proof of Theorem 6. We first show that the algorithm converges to the set of stationary

solutions, and then establish the convergence rate.

Step 1. Convergence to Stationary Solutions. Combining the descent estimate in Lemma

9 as well as the lower bounded condition in Lemma 10, we can again apply the Supermartigale

Convergence Theorem [15, Proposition 4.2] and conclude that

‖xr+1
i − xri ‖ → 0, ‖zr+1 − zr‖ → 0,with probability 1. (3.87)
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From Lemma 8 we have that the constraint violation is satisfied

‖λr+1 − λr‖ → 0, ‖xr+1
i − zr‖ → 0. (3.88)

The rest of the proof follows similar lines as in [R2, Theorem 2.4]. Due to space limitations we

omit the proof.

Step 2. Convergence Rate. We first show that there exists a σ1(α) > 0 such that

‖∇̃L(wr)‖2 +

N∑
i=1

L2
i

N2
‖xri − zr‖2 ≤ σ1(α)

(
‖zr − zr+1‖2 +

N∑
i=1

‖xri − x̂r+1
i ‖2

)
. (3.89)

Using the definition of ‖∇̃Lr(wr)‖ we have:

‖∇̃Lr(wr)‖2 = ‖zr − proxh [zr −∇z(Lr − h(zr))] ‖2 +

N∑
i=1

∥∥∥∥ 1

N
∇gi(xri ) + λri + ηi(x

r
i − zr)

∥∥∥∥2

.

(3.90)

From the optimality condition of the z update (3.73) we have:

zr+1 = proxh

[
zr+1 −

N∑
i=1

ηi

(
zr+1 − xri −

λri
ηi

)
−∇g0(zr+1)

]
.

Using this, the first term in equation (3.90) can be bounded as:

‖zr − proxh [zr −∇z(Lr − h(zr))]‖

=

∥∥∥∥∥zr − zr+1 + zr+1 − proxh

[
zr −

N∑
i=1

ηi(z
r − xri −

λri
ηi

)−∇g0(zr)

]∥∥∥∥∥
≤ ‖zr − zr+1‖+

∥∥∥∥∥proxh

[
zr+1 −

N∑
i=1

ηi

(
zr+1 − xri −

λri
ηi

)
−∇g0(zr+1)

]

− proxh

[
zr −

N∑
i=1

ηi(z
r − xri −

λri
ηi

)−∇g0(zr)

]∥∥∥∥∥
≤ 2‖zr+1 − zr‖+

(
N∑
i=1

ηi + L0

)
‖zr − zr+1‖, (3.91)

where in the last inequality we have used the nonexpansiveness of the proximity operator.

Similarly, the optimality condition of the xi subproblem is given by

1

N
∇gi(x̂r+1

i ) + λri + αiηi(x̂
r+1
i − zr+1) = 0. (3.92)
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Applying this identity, the second term in equation (3.90) can be written as follows:

N∑
i=1

∥∥∥∥ 1

N
∇gi(xri ) + λri + ηi(x

r
i − zr)

∥∥∥∥2

(a)
=

N∑
i=1

∥∥∥∥ 1

N
∇gi(xri )−

1

N
∇gi(x̂r+1

i ) + ηi(x
r
i − zr)− αiηi(x̂r+1

i − zr+1)

∥∥∥∥2

=
N∑
i=1

∥∥∥∥ 1

N
∇gi(xri )−

1

N
∇gi(x̂r+1

i ) + ηi(x
r
i − x̂r+1

i + x̂r+1
i − zr+1 + zr+1 − zr)− αiηi(x̂r+1

i − zr+1)

∥∥∥∥2

(b)

≤ 4

N∑
i=1

[(
L2
i

N2
+ η2

i +
(1− αi)2L2

i

N2α2
i

)
‖x̂r+1

i − xri ‖2 + η2
i ‖zr+1 − zr‖2

]
, (3.93)

where (a) holds because of equation (3.92); (b) holds because of Lemma 8.

Finally, combining (3.91) and (3.93) leads to the following bound for proximal gradient

‖∇̃Lr‖2 ≤

4

N∑
i=1

η2
i +

(
2 + L0 +

N∑
i=1

ηi

)2
 ‖zr − zr+1‖2

+

N∑
i=1

4

(
L2
i

N2
+ η2

i +
(1− αi)2Li
N2α2

i

)
‖xri − x̂r+1

i ‖2. (3.94)

Also note that:

N∑
i=1

L2
i

N2
‖xri − zr‖2 ≤

N∑
i=1

3
L2
i

N2

[
‖xri − x̂r+1

i ‖2 + ‖x̂r+1
i − zr+1‖2 + ‖zr+1 − zr‖2

]
=

N∑
i=1

3
L2
i

N2

[
‖xri − x̂r+1

i ‖2 +
1

α2
i η

2
i

‖λ̂r+1
i − λri ‖2 + ‖zr+1 − zr‖2

]

≤
N∑
i=1

3
L2
i

N2

[
‖xri − x̂r+1

i ‖2 +
L2
i

α2
i η

2
iN

2
‖x̂r+1

i − xri ‖2 + ‖zr+1 − zr‖2
]
. (3.95)

The two inequalities (3.94) – (3.95) imply that:

‖∇̃Lr‖2 +
N∑
i=1

L2
i

N2
‖xri − zr‖2

≤

(
N∑
i=1

4η2
i + (2 +

N∑
i=1

ηi + L0)2 + 3
N∑
i=1

L2
i

N2

)
‖zr − zr+1‖2

+

N∑
i=1

(
4

(
L2
i

N2
+ η2

i + (
1

αi
− 1)2 L

2
i

N2

)
+ 3

(
L4
i

αiN4η2
i

+
L2
i

N2

))
‖xri − x̂r+1

i ‖2. (3.96)
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Define the following quantities:

σ̂1(α) = max
i

{
4

(
L2
i

N2
+ η2

i +

(
1

αi
− 1

)2 L2
i

N2

)
+ 3

(
L4
i

αiη2
iN

4
+
L2
i

N2

)}

σ̃1 =
N∑
i=1

4η2
i + (2 +

N∑
i=1

ηi + L0)2 + 3
N∑
i=1

L2
i

N2
.

Setting σ1(α) = max(σ̂1(α), σ̃1) > 0, we have

‖∇̃Lr‖2 +
N∑
i=1

L2
i

N2
‖xri − zr‖2 ≤ σ1(α)

(
‖zr − zr+1‖2 +

N∑
i=1

‖xri − x̂r+1
i ‖2

)
. (3.97)

From Lemma 9 we know that

E[Lr+1 − Lr|zr, xr] ≤ −γz
2
‖zr+1 − zr‖2 +

N∑
i=1

pici‖xri − x̂r+1
i ‖2 (3.98)

Note that γz =
∑N

i=1 ηi − L0, then define σ̂2 and σ̃2 as

σ̂2(α) = max
i

{
pi

(
γi
2
− L2

i

αiηiN2
− 1− αi

αi

Li
N

)}
σ̃2 =

∑N
i=1 ηi − L0

2
.

We can set σ2(α) = max(σ̂2(α), σ̃2) to obtain

E[Lr − Lr+1|xr, zr] ≥ σ2(α)

(
N∑
i=1

‖x̂r+1
i − xri ‖2 + ‖zr+1 − zr‖2

)
. (3.99)

Combining (3.89) and (3.99) we have

H(wr) = ‖∇̃Lr‖2 +

N∑
i=1

L2
i /N‖xri − zr‖2 ≤

σ1(α)

σ2(α)
E[Lr − Lr+1|F r].

Let us set C(α) = σ1(α)
σ2(α) and take expectation on both side of the above equation to obtain:

E[H(wr)] ≤ C(α)E[Lr − Lr+1]. (3.100)

Summing both sides of the above inequality over r = 1, · · · , R, we obtain:

R∑
r=1

E[H(wr)] ≤ C(α)E[L1 − LR+1]. (3.101)

Using the definition of wm = (xm, zm, λm), and following the same line of argument as Theorem

(4) we eventually conclude that

E[H(wm)] ≤ C(α)E[L1 − LR+1]

R
. (3.102)

The proof is complete. Q.E.D.
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3.6.5 Proof of Proposition 1

Applying the optimality condition on z subproblem in (3.32) we have:

zr+1 = argmin
z

h(z) + g0(z) +
β

2
‖z − ur+1‖2 (3.103)

where the variable ur+1 is given by (cf. (5.108))

ur+1 = β

N∑
i=1

(λri + ηix
r+1
i ). (3.104)

Now from one of the key properties of NESTT-G [cf. Section 3.6, equation (3.28)], we have that

ur+1 = zr − β

(
1

Nαir

(
∇gir(zr)−∇gir(yr−1

ir
)
)

+
1

N

N∑
i=1

∇gi(yr−1
i )N

)
. (3.105)

This verifies the claim. Q.E.D.
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Table 3.1: Comparison of # of gradient evaluations for NESTT-G and GD in the worst case

NESTT-G GD

# of Gradient Evaluations O
(

(
∑N

i=1

√
Li/N)2/ε

)
O
(∑N

i=1 Li/ε
)

Case I: Li = 1, ∀i O(N/ε) O(N/ε)

Case II : O(
√
N) terms with Li = N

the rest with Li = 1
O(N/ε) O(N3/2/ε)

Case III : O(1) terms with Li = N2

the rest with Li = 1
O(N/ε) O(N2/ε)

Table 3.2: Optimality gap ‖∇̃1/βf(zr)‖2 for different algorithms, with 100 passes of the datasets.

SGD NESTT-E (α = 10) NESTT-G SAGA

N Uniform Non-Uni Uniform Non-Uni Uniform Non-Uni Uniform Non-Uni

10 3.4054 0.2265 2.6E-16 6.16E-19 2.3E-21 6.1E-24 2.7E-17 2.8022

20 0.6370 6.9087 2.4E-9 5.9E-9 1.2E-10 2.9E-11 7.7E-7 11.3435

30 0.2260 0.1639 3.2E-6 2.7E-6 4.5E-7 1.4E-7 2.5E-5 0.1253

40 0.0574 0.3193 5.8E-4 8.1E-5 1.8E-5 3.1E-5 4.1E-5 0.7385

50 0.0154 0.0409 8.3E.-4 7.1E-4 1.2E-4 2.7E-4 2.5E-4 3.3187
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CHAPTER 4. PERTURBED PROXIMAL PRIMAL DUAL ALGORITHM

FOR NONCONVEX NONSMOOTH OPTIMIZATION

Abstract

In this paper we propose a perturbed proximal primal dual algorithm (PProx-PDA) for opti-

mization problems whose objective is the sum of smooth (possibly nonconvex) and convex (possibly

nonsmooth) functions subject to a linear coupling constraint. This family of problems has appli-

cations in a number of statistical and engineering applications, for example in high-dimensional

subspace estimation, and distributed signal processing and learning over networks. The proposed

method is of Uzawa type, in which a primal gradient descent step is performed followed by a (ap-

proximate) dual gradient ascent step. One distinctive feature of the proposed algorithm is that the

primal and dual steps are both perturbed appropriately using past iterates so that a number of

asymptotic convergence and rate of convergence results (to first-order stationary solutions) can be

obtained. Finally, we conduct extensive numerical experiments to validate the effectiveness of the

proposed algorithms.

4.1 Introduction

The Problem

Consider the following optimization problem

min
x∈X

f(x) + h(x), s.t. Ax = b, (4.1)

where f(x) : RN → R is a continuous smooth function (possibly nonconvex); A ∈ RM×N is a

rank deficient matrix; b ∈ RM is a given vector; X is a convex compact set; h(x) : RN → R is a

lower semi-continuous nonsmooth convex function. Problem (4.1) is an interesting class that can
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be specialized to a number of statistical and engineering applications. We provide a few of these

applications in the next subsection.

4.1.1 Motivating Applications

Sparse subspace estimation. Suppose that Σ ∈ Rp×p is an unknown covariance matrix, λ1 ≥

λ2 ≥ · · ·λp and u1, u2, · · · , up are its eigenvalues and eigenvectors, respectively, and they satisfy

Σ =
∑p

i=1 λiuiu
>
i . Principal Component Analysis (PCA) aims to recover u1, u2, · · · , uk, where

k ≤ p, from a sample covariance matrix Σ̂ obtained from i.i.d samples {xi}ni=1. The subspace

spanned by {ui}ki=1 is called k-dimensional principal subspace, whose projection matrix is given

by Π∗ =
∑p

i=1 uiu
>
i . Therefore, PCA reduces to finding an estimate of Π∗, denoted by Π̂, from

the sample covariance matrix Σ̂. In high dimensional setting where the number of data points is

significantly smaller than the dimension i.e. (n � p), it is desirable to find a sparse Π̂, using the

following formulation [49]

min
Π

〈
Σ̂,Π

〉
+ Pν(Π), s.t. Π ∈ Fk. (4.2)

In the above formulation, Fk denotes the Fantope set [135], given by Fk = {X : 0 � X �

I, trace(X) = k}, which promotes low rankness in X. The function Pν(Π) is a nonconvex regularizer

that enforces sparsity on Π. Typical forms of this regularization are smoothly clipped absolute

deviation (SCAD) [35], and minimax concave penalty (MCP) [143]. For example, the definition of

MCP regularization with parameters b and ν is given below

Pν(φ) = ι|φ|≤bν

(
ν|φ| − φ2

2b

)
+ ι|φ|>bν

(
bν2

2

)
, (4.3)

where, ιX denoted the indicator function for convex set X, which is defined as ιX(y) = 0 when

y ∈ X, and ιX(y) =∞ otherwise.

One particular characterization for these nonconvex penalties is that they can be decomposed

as a sum of an `1 function and a concave function qν(x): Pν(φ) = ν|φ|+ qν(φ) for some ν ≥ 0. In

a recent work [49], it is shown that with high probability, every first-order stationary solution of

problem (4.2) (denoted as Π̂) is of high-quality, in the sense that it satisfies the following error

‖Π̂−Π∗‖F ≤
4Cλ1

√
s1

λk − λk+1

√
s

n
+

12Cλ1
√
m1m2

λk − λk+1

√
log p

n
, (4.4)
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where s = |supp(diag(Π∗))|, C, s1, m1, and m2 are some constants. See [49, Theorem 3] for detailed

description. In order to deal with the Fantope and the nonconvex regularizer separately, one can

introduce a new variable Φ and reformulate problem (4.2) in the following manner [135]

min
Π,Φ

〈
Σ̂,Π

〉
+ Pν(Φ) s.t. Π ∈ Fk, Π− Φ = 0. (4.5)

Clearly this is special case of problem (4.1), with x = [Π,Φ], f(x) =
〈
Σ̂,Π

〉
+ qν(Φ), h(x) = ν‖Φ‖1,

X = Fk, A = [I,−I], b = 0.

The exact consensus problem over networks. Consider a network which consists of N agents

who collectively optimize the following problem

min
y∈R

f(y) + h(y) :=
N∑
i=1

(fi(y) + hi(y)) , (4.6)

where fi(y) : R → R is a smooth function, and hi(y) : R → R is a convex, possibly nonsmooth

regularizer (here y is assumed to be scalar for ease of presentation). Note that both fi and hi are

only accessible by agent i. In particular, each local loss function fi can represent: 1) a mini-batch of

(possibly nonconvex) loss functions modeling data fidelity [7]; 2) nonconvex activation functions of

neural networks [3]; 3) nonconvex utility functions used in applications such as resource allocation

[18]. The regularization function hi usually take the following forms: 1) convex regularizers such

as nonsmooth `1 or smooth `2 functions; 2) the indicator function for closed convex set X, i.e. ιX .

This problem has found applications in various domains such as distributed statistical learning

[95], distributed consensus [133], distributed communication networking [147, 82], distributed and

parallel machine learning [61, 39] and distributed signal processing [117, 147]; for more applications

we refer the readers to a recent survey [46].

To integrate the structure of the network into problem (4.6), we assume that the agents are

connected through a network defined by an undirected, connected graph G = {V, E}, with |V| = N

vertices and |E| = E edges. Each agent can only communicate with its immediate neighbors, and

it is responsible for optimizing one component function fi regularized by hi. Define the incidence

matrix A ∈ RE×N as following: if e ∈ E and it connects vertex i and j with i > j, then Aev = 1 if

v = i, Aev = −1 if v = j and Aev = 0 otherwise. Using this definition, the signed graph Laplacian

matrix L− is given by L− := ATA ∈ RN×N . Introducing N new variables xi as the local copy of the
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global variable y, and define x := [x1; · · · ;xN ] ∈ RN , problem (4.6) can be equivalently expressed

as

min
x∈RN

f(x) + h(x) :=
N∑
i=1

(fi(xi) + hi(xi)) , s.t. Ax = 0. (4.7)

This problem is precisely original problem (4.1) with correspondence X = RN , b = 0, f(x) :=∑N
i=1 fi(xi), and h(x) :=

∑N
i=1 hi(xi).

The partial consensus problem. In the previous application, the agents are required to reach

exact consensus, and such constraint is imposed through Ax = 0 in (4.7). In practice, however,

consensus is rarely achieved exactly, for example due to potential disturbances in network commu-

nication; see detailed discussion in [75]. Further, in applications ranging from distributed estimation

to rare event detection, the data obtained by the agents, such as harmful algal blooms, network

activities, and local temperature, often exhibit distinctive spatial structure [28]. The distributed

problem in these settings can be best formulated by using certain partial consensus model in which

the local variables of an agent are only required to be close to those of its neighbors. To model

such a partial consensus constraint, we denote ξe as the permissible tolerance for e = (i, j) ∈ E ,

and replace the strict consensus constraint xi − xj = 0 with ‖xi − xj‖2 ≤ ξe. Further, we define

the link variable ze = xi − xj , and set z := {ze}e∈E , Z := {z | ‖ze‖2 ≤ ξe ∀ e ∈ E}. Using these

notations, the partial consensus problem can be formulated as

min
x,z

N∑
i=1

(fi(xi) + hi(xi)) s.t. Ax− z = 0, z ∈ Z, (4.8)

which is again a special case of problem (4.1).

4.1.2 Literature Review and Contribution.

4.1.2.1 Literature on Related Algorithms.

The Augmented Lagrangian (AL) method, also known as the methods of multipliers, is pio-

neered by Hestenes [58] and Powell [107]. It is a classical algorithm for solving nonconvex smooth

constrained problems and its convergence is guaranteed under rather week assumptions [14, 106, 36].

A modified version of AL has been develped by Rockafellar in [113], in which a proximal term has

been added to the objective function in order to make it strongly convex in each iteration. Later
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Wright [73] specialized this algorithm to the linear programming problem. Many existing packages

such as LANCELOT are implemented based on AL method. Recently, due to the need to solve very

large scale nonlinear optimization problems, the AL and its variants regain their popularity. For

example, in [29] a line search AL method has been proposed for solving problem (4.1) with h ≡ 0

and X = {x; l ≤ x ≤ u}. Also reference [21] has developed an AL based algorithm for nonconvex

nonsmooth optimization, where subgradients of the augmented Lagrangian are used in the primal

update. When the problem is convex, smooth and the constraints are linear, Lan and Monterio

[77] have analyzed the iteration complexity for the AL method. More specifically, the authors ana-

lyzed the total number of Nesterov’s optimal iterations [104] that are required to reach high quality

primal-dual solutions. Subsequently, Liu et al [87] proposed an inexact AL (IAL) algorithm which

only requires an ε−approximated solution for the primal subproblem at each iteration. Hong et

al [61] proposed a proximal primal-dual algorithm (Prox-PDA), an AL-based method mainly used

to solve smooth and unconstrained distributed nonconvex problem [i.e. problem (4.7) with hi ≡ 0

and X ∈ RN ]. Overall, the AL based methods often require sophisticated stepsize selection, and an

accurate oracle for solving the primal problem. Further, they cannot deal with problems that have

both nonsmooth regularizer h(x) and a general convex constraint. Therefore, it is not straightfor-

ward to apply these methods to problems such as distributed learning and high-dimensional sparse

subspace estimation mentioned in the previous subsection.

Recently, the alternating direction method of multipliers (ADMM), a variant of the AL, has

gained popularity for decomposing large-scale nonsmooth optimization problems [20]. The method

originates in early 1970s [48, 42], and has since been studied extensively [16, 62, 32]. The main

strength of this algorithm is that it is capable of decomposing a large problem into a series of small

and simple subproblems, therefore making the overall algorithm scalable and easy to implement.

However, unlike the AL method, the ADMM is designed for convex problems, despite its good

numerical performance in nonconvex problems such as the nonnegative matrix factorization [130],

phase retrieval [139], distributed clustering [39], tensor decomposition [84] and so on. Only very

recently, researchers have begun to rigorously investigate the convergence of ADMM (to first-
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order stationary solutions) for nonocnvex problems. Zhang [144] have analyzed a class of splitting

algorithms (which includes the ADMM as a special case) for a very special class of nonconvex

quadratic problems. Ames and Hong in [5] have developed an analysis for ADMM for certain `1

penalized problem arising in high-dimensional discriminant analysis. Other works along this line

include [63, 79, 57, 97] and [136]; See Table 1 in [136] for a comparison of the conditions required

for these works. Despite the recent progress, it appears that the aforementioned works still pose

very restrictive assumptions on the problem types in order to achieve convergence. For example it

is not clear whether the ADMM can be used for the distributed nonconvex optimization problem

(4.7) over an arbitrary connected graph, despite the fact that for convex problem such application

is popular, and the resulting algorithms are efficient.

4.1.2.2 Literature on Applications.

The sparse subspace estimation problem formulations (4.2) and (4.5) have been first considered

in [30, 135] and subsequently considered in [49]. The work [135] proposes a semidefinite convex

optimization problem to estimate principal subspace of a population matrix Σ based on a sample

covariance matrix. The authors of [49] further show that by utilizing nonconvex regularizers it

is possible to significantly improve the estimation accuracy for a given number of data points.

However, the algorithm considered in [49] is not guaranteed to reach any stationary solutions.

The consensus problem (4.6) and (4.7) have been studied extensively in the literature when

the objective functions are all convex; see for example [100, 88, 99, 122, 11]. Without assuming

convexity of fi’s, the literature has been very scant; see recent developments in [17, 63, 55, 92].

However, all of these recent results require that the nonsmooth terms hi’s, if present, have to be

identical. This assumption is unnecessarily strong and it defeats the purpose of distributed consensus

since global information about the objective function has to be shared among the agents. Further,

in the nonconvex setting we are not aware of any existing distributed algorithm with convergence

guarantee that can deal with the more practical problem (4.8) with partial consensus.
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4.1.2.3 Contributions of This work.

In this paper we develop an AL-based algorithm, named the perturbed proximal primal dual

algorithm (PProx-PDA), for the challenging linearly constrained nonconvex nonsmooth problem

(4.1). The proposed method is of Uzawa type [74] and has very simple update rule. It is a single-

loop algorithm that alternates between a primal (scaled) proximal gradient descent step, and an

(approximate) dual gradient ascent step. Further, by appropriately selecting the scaling matrix in

the primal step, the variables can be easily updated in parallel. These features make the algorithm

attractive for applications such as the high-dimensional subspace estimation and the distributed

learning problems discussed in Section 4.1.1,

One distinctive feature of the PProx-PDA is the use of a novel perturbation scheme for both the

primal and dual steps, which is designed to ensure a number of asymptotic convergence and rate

of convergence properties (to approximate first-order stationary solutions). Specifically, we show

that when certain perturbation parameter remains constant across the iterations, the algorithm

converges globally sublinearly to the set of approximate first-order stationary solutions. Further,

when the perturbation parameter diminishes to zero with appropriate rate, the algorithm converges

to the set of exact first-order stationary solutions. To the best of our knowledge, the proposed

algorithm represents one of the first first-order methods with convergence and rate of convergence

guarantees for problems in the form of (4.1).

Notation. We use ‖ · ‖, ‖ · ‖1, and ‖ · ‖F to denote the Euclidean norm, `1-norm, and Frobenius

norm respectively. For given vector x, and matrix H, we denote ‖x‖2H := xTHx. For two vectors a,

b we use 〈a, b〉 to denote their inner product. We use σmax(A) to denote the maximum eigenvalue

for a matrix A. We use IN to denote an N ×N identity matrix. For a nonsmooth convex function

h(x), ∂h(x) denotes the subdifferential set defined by

∂h(x) = {v ∈ RN ;h(x) ≥ h(y) + 〈v, x− y〉 ∀y ∈ RN}. (4.9)

For a convex function h(x) and a constant α > 0 the proximity operator is defined as below

prox
1/α
h (x) := argmin

z

1

2α
‖x− z‖2 + h(z). (4.10)
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4.2 Perturbed Proximal Primal Dual Algorithm

To begin with, we introduce the the augmented Lagrangian for problem (4.1)

Lρ(x, y) = f(x) + h(x) + 〈λ,Ax− b〉+
ρ

2
‖Ax− b‖2, (4.11)

where λ ∈ RM is the dual variable associated with the equality constraint Ax = b, and ρ > 0 is the

penalty parameter for the augmented term ‖Ax− b‖2.

For notational simplicity, define u(x; y) := 〈∇f(y), x−y〉 to be the linear approximation of f(x).

Define B ∈ RM×N to be a scaling matrix, and introduce two new parameter γ > 0 and β > 0,

where γ is a small positive number which is related to the size of the equality constraint violation,

and β is the proximal parameter that regularizes the primal update. Let us choose γ > 0 and ρ > 0

such that ργ < 1. The steps of the proposed PProx-PDA algorithm is given below (Algorithm 5).

Algorithm 5 The perturbed proximal primal-dual algorithm (PProx-PDA)

Initialize: λ0 and x0

Repeat: update variables by

xr+1 = arg min
x∈X

u(x, xr) + h(x) + 〈(1− ργ)λr, Ax− b〉

+
ρ

2
‖Ax− b‖2 +

β

2
‖x− xr‖2BTB (4.12a)

λr+1 = (1− ργ)λr + ρ
(
Axr+1 − b

)
(4.12b)

Until Convergence.

In contrast to the AL method, in which the primal variable is updated by minimizing the

augmented Lagrangian given in (4.11), in PProx-PDA the primal step minimizes an approximated

augmented Lagrangian, where the approximation comes from: 1) replacing function f(x) with the

surrogate function u(x, xr); 2) perturbing λ by a positive factor 1 − ργ > 0; 3) adding proximal

term β
2 ‖x−x

r‖2
BTB

. We make a few remarks about these algorithmic choices. First, the use of the

linear surrogate function u(x, y) := 〈∇f(y), x− y〉 ensures that only first-order information is used

for the primal update. Also it is worth mentioning that one can replace the function u(x; y) with

a wider class of “surrogate” functions satisfying certain gradient consistent conditions [109, 119],
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and our subsequent analysis will still hold true. However, in order to stay focused, we choose

not to present those variations. Second, the primal and dual perturbation is added to facilitate

convergence analysis. Note that in the convex case, similar perturbation in the dual step has been

considered for example in [101], but the purpose is to make sure that the dual variable lies in a

convex and compact set under the Slater constraint qualification. Third, the appropriate choice of

scaling matrix B ensures the following key properties:

a) Problem (4.12a) is strongly convex;

b) Problem (4.12a) is decomposable over different variables (or variable blocks).

Point (a) is relatively easy to see since ρ and β can be chosen to be large enough, and BTB can

be chosen to satisfy ATA + BTB � I, so that the strongly convex regularization dominates the

nonconvex function f(x). We illustrate Point (b) through the distributed optimization problem

(4.7). Let us define the signless incidence matrix B := |A|, where A is the signed incidence matrix

defined in Section 4.1.1, and the absolute value is taken for each component of A. Using this choice

of B, we have BTB = L+ ∈ RN×N , which is the signless graph Laplacian whose (i, i)th diagonal

entry is the degree of node i, and its (i, j)th entry is 1 if e = (i, j) ∈ E , and 0 otherwise. Further,

let us set ρ = β. Then x-update step (4.12a) becomes

xr+1= arg min
x

N∑
i=1

〈∇fi(xri ), xi − xri 〉+ 〈(1− ργ)λr, Ax− b〉+ ρxTDx− ρxTL+x
r

where D := diag[d1, · · · , dN ] ∈ RN×N is the diagonal degree matrix, with di denoting the degree of

node i. Clearly this problem is separable over the variable xi for all i = 1, 2, · · · , N .

4.2.1 Convergence Analysis

In this subsection we provide the convergence analysis for PProx-PDA presented in Algorithm

5. We will frequently use the following identity

〈b, b− a〉 =
1

2

(
‖b− a‖2 + ‖b‖2 − ‖a‖2

)
. (4.13)

Also, for the notation simplicity we define
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wr := (xr+1 − xr)− (xr − xr−1). (4.14)

To proceed, let us make the following blanket assumptions on problem (4.1).
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Assumption A.

A1. The function f(x) is L-smooth i.e., there exists L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ X. (4.15)

Further, without loss of generality, assume that f(x) ≥ 0 for all x ∈ X.

A2. The function h(x) is nonsmooth lower semi-continuous convex function, and it is assumed to

be lower bounded: h(x) ≥ 0, ∀ x ∈ X.

A3. The constraint Ax = b is feasible over x ∈ X.

A4. The feasible set X is a convex and compact set.

A5. The scaling matrix B is chosen such that ATA+BTB � I.

Our first lemma characterizes the behavior of the dual variable.

Lemma 11 Under Assumption A, the following holds true for PProx-PDA

1− ργ
2ρ

‖λr+1 − λr‖2 +
β

2
‖xr+1 − xr‖2BTB

≤ 1− ργ
2ρ

‖λr − λr−1‖2 +
β

2
‖xr − xr−1‖2BTB

+
L

2
‖xr+1 − xr‖2 +

L

2
‖xr − xr−1‖2 − γ‖λr+1 − λr‖2, ∀ r ≥ 1. (4.16)

Proof 1 From the optimality condition of the x-update in (4.12a) we obtain

〈∇f(xr) +ATλr(1− ργ) + ρAT (Axr+1 − b)

+ βBTB(xr+1 − xr) + ξr+1, xr+1 − x〉 ≤ 0, ∀ x ∈ X, (4.17)

where ξr+1 ∈ ∂h(xr+1) is a subgradint for nonsmooth function h(x) at x = xr+1. Performing this

equation for r − 1, we get

〈∇f(xr−1) +ATλr−1(1− ργ) + ρAT (Axr − b)

+ βBTB(xr − xr−1) + ξr, xr − x〉 ≤ 0, ∀ x ∈ X, (4.18)
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where ξr ∈ ∂h(xr) is defined similarly. Let x = xr in the first inequality and x = xr+1 in the

second, we can then add the resulting inequalities to obtain

〈∇f(xr)−∇f(xr−1), xr+1 − xr〉+ 〈AT (λr+1 − λr), xr+1 − xr〉

+ β〈BTBwr, xr+1 − xr〉 ≤ 〈ξr − ξr+1, xr+1 − xr〉 ≤ 0 (4.19)

where in the last inequality we have utilized the convexity of h. Now let us analyze each terms in

(4.19). First, by the application of Young’s inequality, and the assumption that f is L-smooth we

have

〈∇f(xr−1)−∇f(xr), xr+1 − xr〉 ≤ L

2
‖xr+1 − xr‖2 +

L

2
‖xr − xr−1‖2. (4.20)

For the second term, we have the following series of equalities

〈AT (λr+1 − λr), xr+1 − xr〉 = 〈A(xr+1 − xr), λr+1 − λr〉

= 〈(Axr+1 − b− γλr)− (Axr − b− γλr−1), λr+1 − λr〉+ γ〈λr − λr−1, λr+1 − λr〉

(4.12b),(4.13)
=

1

2

(
1

ρ
− γ
)(
‖λr+1 − λr‖2 − ‖λr − λr−1‖2

+ ‖(λr+1 − λr)− (λr − λr−1)‖2
)

+ γ‖λr+1 − λr‖2. (4.21)

For the third term, we have

β〈BTBwr, xr+1 − xr〉 (4.13)
=

β

2

(
‖xr+1 − xr‖2BTB − ‖x

r − xr−1‖2BTB + ‖wr‖2BTB
)

≥ β

2

(
‖xr+1 − xr‖2BTB − ‖x

r − xr−1‖2BTB
)
. (4.22)

Therefore, combining (4.20) – (4.22), we obtain the desired result in (4.16). Q.E.D.

Next we analyze the behavior of the primal iterations. Towards this end, let us define the

following new quantity

T (x, λ) := f(x) + h(x) + 〈(1− ργ)λ,Ax− b− γλ〉+
ρ

2
‖Ax− b‖2. (4.23)

Note that this quantity is identical to the augmented Lagrangian when γ = 0. It is constructed to

track the behavior of the algorithm. The next lemma analyzes the change of T in two successive

iterations of the algorithm.
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Lemma 12 Suppose that β > 3L and ρ ≥ β. Then we have the following

T (xr+1, λr+1) +
(1− ργ)γ

2
‖λr+1‖2

≤ T (xr, λr) +
(1− ργ)γ

2
‖λr‖2 +

(
(1− ργ)(2− ργ)

2ρ

)
‖λr+1 − λr‖2

−
(
β − 3L

2

)
‖xr+1 − xr‖2, ∀ r ≥ 0. (4.24)

Proof 2 For simplicity let us define g(x, λ;xr) := T (x, λ) + β
2 ‖x− x

r‖BTB. Then it is easy to see

that if β ≥ 3L, then the change of x results in the reduction of T :

T (xr+1, λr)− T (xr, λr) = g(xr+1, λr;xr)− g(xr, λr;xr)− β

2
‖xr+1 − xr‖BTB

(i)

≤ 〈∇f(xr+1) + ξr+1 + (1− ργ)ATλr + ρAT (Axr+1 − b) + βBTB(xr+1 − xr),

xr+1 − xr〉 − β − L
2
‖xr+1 − xr‖2

(ii)

≤ −
(
β − 3L

2

)
‖xr+1 − xr‖2, (4.25)

where (i) is true because when β ≥ 3L, ρ ≥ β and ATA + BTB � I, function g(x, λ;xr) is

strongly convex with modulus β − L [here ξr+1 ∈ ∂h(xr+1)]; (ii) is true due to the optimality

condition (4.17) for x-subproblem, and the assumption that f(x) is L-smooth. Second, let us analyze

T (xr+1, λr+1)− T (xr+1, λr) as the following

T (xr+1, λr+1)− T (xr+1, λr) (4.26)

= (1− ργ)
(
〈λr+1 − λr, Axr+1 − b− γλr〉

)
− (1− ργ)〈γλr+1 − γλr, λr+1〉

(4.12b),(4.13)
= (1− ργ)

(
1

ρ
‖λr+1 − λr‖2 +

γ

2
(‖λr‖2 − ‖λr+1‖2 − ‖λr+1 − λr‖2)

)
.

Combining the previous two steps, we obtain the desired inequality in (4.24). Q.E.D.

Comparing the results of two previous lemmas, from (4.16) we can observe that term 1
2(1
ρ −

γ)‖λr+1 − λr‖2 + β
2 ‖x

r+1 − xr‖2
BTB

is descending in ‖λr+1 − λr‖2 and ascending in ‖xr+1 − xr‖2,

while from (4.24) we can see that T (xr+1, λr+1)+ (1−ργ)γ
2 ‖λr+1‖2 is behaving in an opposite manner.

Therefore, let us define the following potential function Pc as a conic combination of these two terms

such that it is descending in each iteration. For some c > 0
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Pc(x
r+1, λr+1;xr, λr) := T (xr+1, λr+1) +

(1− ργ)γ

2
‖λr+1‖2

+
c

2

(
1− ργ
ρ
‖λr+1 − λr‖2 + β‖xr+1 − xr‖2BTB + L‖xr+1 − xr‖2

)
. (4.27)

Then according to the previous two lemmas, one can conclude there are constants a1, a2, such that

Pc(x
r+1, λr+1;xr, λr)− Pc(xr, λr;xr−1, λr−1)

≤ −a1‖λr+1 − λr‖2 − a2‖xr+1 − xr‖2, (4.28)

where a1 =
(

(1− ργ)γ2 + cγ − 1−ργ
ρ

)
, and a2 = (β−3L

2 − cL). Therefore, it is easy to observe that

in order to make the Pc function descent, it is sufficient to have

(1− ργ)
γ

2
+ cγ − 1− ργ

ρ
> 0, and β > (3 + 2c)L. (4.29)

Therefore a sufficient condition is that

τ := ργ ∈ (0, 1), c >
1

τ
− 1 > 0, β > (3 + 2c)L, ρ ≥ β. (4.30)

Next, let us show that the potential function Pc is lower bounded, when choosing particular pa-

rameters given in the previous lemma.

Lemma 13 Suppose Assumption A is satisfied, and the algorithm parameters are chosen according

to (4.30). Then the following Statement holds true

∃ P s.t. Pc(x
r+1, λr+1;xr, λr) ≥ P > −∞, ∀ r ≥ 0. (4.31)

Proof 3 First, we analyze terms related to T (xr+1, λr+1). The inner product term in (4.23) can

be bounded as

〈λr+1 − ργλr+1, Axr+1 − b− γλr+1〉

(4.13)
=

1

2

(
1− ργ
ρ
− (1− ργ)γ

)
(‖λr+1‖2 − ‖λr‖2 + ‖λr+1 − λr‖2)

=
(1− ργ)2

2ρ
(‖λr+1‖2 − ‖λr‖2 + ‖λr+1 − λr‖2). (4.32)
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Clearly, the constant in front of the above equality is positive. Taking a sum over R iterations of

T (xr+1, λr+1), we obtain

R∑
r=1

T (xr+1, λr+1) =
R∑
r=1

(
f(xr+1) + h(xr+1) +

ρ

2
‖Axr+1 − b‖2

)
+

(1− ργ)2

2ρ
(‖λR+1‖2 − ‖λ1‖2 +

R∑
r=1

‖λr+1 − λr‖2)

≥
R∑
r=1

(
f(xr+1) + h(xr+1) +

ρ

2
‖Axr+1 − b‖2

)
+

(1− ργ)2

2ρ
(‖λR+1‖2 − ‖λ1‖2)

≥ −(1− ργ)2

2ρ
‖λ1‖2, (4.33)

where the last inequality comes from the fact that f and h are both assumed to be lower bounded

by 0. Therefore, the sum of the T (·, ·) function is lower bounded. From (4.33) we conclude that∑R
r=1 Pc(x

r+1, λr+1;xr, λr) is also lower bounded by − (1−ργ)2

2ρ ‖λ1‖2 for any R, because besides the

term
∑R

r=1 T (xr+1, λr+1), the rest of the terms are all positive. Combined with the fact that Pc is

nonincreasing we conclude that the potential function is lower bounded, that is we have

P ≥ −(1− ργ)2

2ρ
‖λ1‖2. (4.34)

This proves the claim. Q.E.D.

Now we are ready to present the main result on the convergence of the PProx-PDA. To proceed,

let us define some approximate stationary solutions for problem (4.1).

Definition 2 Stationary solution. Consider problem (4.1). Given ε > 0, the tuple (x∗, λ∗) is

an ε-stationary solution if the following holds

‖Ax∗ − b‖2 ≤ ε, 〈∇f(x∗) +ATλ∗ + ξ∗, x∗ − x〉 ≤ 0, ∀ x ∈ X, (4.35)

where ξ∗ is some vector that satisfies ξ∗ ∈ ∂h(x∗).

We note that the ε-stationary solution slightly violates the constraint violation. This definition is

closely related to the approximate KKT (AKKT) condition in the existing literature [6, 53]. It

can be verified that when X = RN , and h ≡ 0, then the condition in (4.35) satisfies the stopping
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criteria for reaching AKKT condition Eq. (9)-(11) in [6]. We refer the readers to [6, Section 3.1]

for detailed discussion of the relationship between AKKT and KKT conditions.

We show below that by appropriately choosing the algorithm parameters, the PProx-PDA in fact

converges to the set of approximate stationary solutions. The precise relationship to convergence

to ε-stationary solutions involves bounding the size of the dual solutions, as well as the choice of

various algorithm parameters. These issues will be discussed in the next subsection.

Theorem 7 Suppose Assumption A holds. Further assume that the parameters γ, ρ, β, c satisfy

(4.30). For any given ε > 0, the following is true for the sequence (xr, λr) generated by the PProx-

PDA

• In the limit we have

λr+1 − λr → 0, xr+1 − xr → 0.

• Let (x∗, λ∗) denote any limit point of the sequence (xr, λr). Then (x∗, λ∗) is a (γ2‖λ∗‖2)-

stationary solution of problem (4.1).

Proof 4 Combining the bound given in (4.28) with the fact that the potential function Pc is de-

creasing and lower bounded, we immediately conclude that

λr+1 − λr → 0, xr+1 − xr → 0. (4.36)

which proves the first part.

In order to prove the second part let (x∗, λ∗) be any limit point of the sequence (xr, λr). From

(4.12b) we have λr+1 − λr = ρ(Axr+1 − b− γλr). Then combining this with (4.36) we obtain

Ax∗ − b− γλ∗ = 0. (4.37)

Thus, we have ‖Ax∗ − b‖2 ≤ γ2‖λ∗‖2; which proves the first inequality in (4.35). Further, from

the optimality condition of x-subproblem we have

〈∇f(xr) + ξr + (1− ργ)ATλr + ρAT (Axr+1 − b)

+ βBTB(xr+1 − xr), xr+1 − x〉 ≤ 0, ∀ x ∈ X, (4.38)
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where ξr ∈ ∂h(xr). From the dual variable update we have λr+1 = (1 − ργ)λr + ρ
(
Axr+1 − b

)
,

therefor combining this with the previous equation we have

〈∇f(xr) + ξr +ATλr+1 + βBTB(xr+1 − xr), xr+1 − x〉 ≤ 0, ∀ x ∈ X. (4.39)

This inequality together with (4.36) implies (4.35).

4.2.2 The Choice of Perturbation Parameter

In this section, we discuss how to obtain ε-stationary solution. First, note that Theorem 7

indicates that if λ∗ is bounded, and the bound is independent of the choice of parameters γ, ρ, β, c,

then one can choose γ = O(
√
ε) to reach an ε optimal solution. Such boundedness of λ∗ can be

ensured by assuming certain constraint qualification (CQ) at (x∗, λ∗); see a related discussion in

the Appendix. In the rest of this section, we take an alternative approach to argue ε-stationary

solution. Our general strategy is to let 1
ρ and γ proportional to the accuracy parameter ε, while

keeping τ = ργ ∈ (0, 1) and c fixed to some ε-independent constants.

Let us define the following constants for problem (4.1)

d1 = max{‖Ax− b‖2 | x ∈ X}, d2 = max{‖x− y‖2 | x, y ∈ X},

d3 = max{‖x− y‖2BTB | x, y ∈ X}, d4 = max{f(x) + h(x) | x ∈ X}.
(4.40)

The lemma below provides a parameter independent bound for ρ
2‖Ax

1 − b‖2.

Lemma 14 Suppose λ0 = 0, Ax0 = b, ρ ≥ β, and β − 3L > 0. Then we have

ρ

2
‖Ax1 − b‖2 ≤ d4,

β

2
‖x1 − x0‖2 ≤ d4 +

3L

2
d2 (4.41)

Proof 5 From Lemma 12, and use the choice of x0 and λ0, we obtain

T (x1, λ1) +
(1− ργ)γ

2
‖λ1‖2 +

β − 3L

2
‖x1 − x0‖2

≤ T (x0, λ0) +

(
1− ργ
ρ
− γ

2
(1− ργ)

)
‖λ1‖2.

Utilizing the definition of T (x, λ) and (4.32), we obtain
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T (x1, λ1) = f(x1) + h(x1) +
(1− ργ)2

ρ
‖λ1‖2 +

ρ

2
‖Ax1 − b‖2

T (x0, λ0) = f(x0) + h(x0).

Combining the above, we obtain(
(1− ργ)γ − 1− ργ

ρ
+

(1− ργ)2

ρ

)
‖λ1‖2 +

ρ

2
‖Ax1 − b‖2 +

β − 3L

2
‖x1 − x0‖2

≤ T (x0, λ0)− f(x1)− h(x1)

By simple calculation we can show that
(

(1− ργ)γ − 1−ργ
ρ + (1−ργ)2

ρ

)
= 0. By using the assumption

f(x1) ≥ 0, h(x1) ≥ 0, it follows that

β − 3L

2
‖x1 − x0‖2 ≤ d4,

ρ

2
‖Ax1 − b‖2 ≤ d4. (4.42)

This leads to the desired claim. Q.E.D.

Combining the above lemma with dual update (4.12b), we can conclude that

1

2ρ
‖λ1‖2 =

ρ

2
‖Ax1 − b‖2 ≤ d4. (4.43)

Next, we derive an upper bound for the initial potential function Pc(x
1, λ1;x0, λ0). Assuming

that Ax0 = b, λ0 = 0, we have

Pc(x
1, λ1;x0, λ0)

(4.27)
= T (x1, λ1) +

(1− ργ)(γ + c/ρ)

2
‖λ1‖2

+
c

2

(
β‖x1 − x0‖2BTB + L‖x1 − x0‖2

)
(4.23),(4.32)

≤ f(x1) + h(x1) +
(1− ργ)2

ρ
‖λ1‖2 +

ρ

2
‖Ax1 − b‖2

+
(1− ργ)(γ + c/ρ)

2
‖λ1‖2 +

c

2

(
β‖x1 − x0‖2BTB + L‖x1 − x0‖2

)
(4.41)

≤
[
2 + 2(1− ργ)2 + (1− ργ)(c+ ργ)

]
d4 +

c

2

(
2σmax(BTB)(d4 +

3L

2
d2) + Ld2

)
:= P 0

c (4.44)

It is important to note that P 0
c does not depend on ρ, γ, β individually, but only on ργ and c, both

of which can be chosen as absolute constants. The next lemma bounds the size of ‖λr+1‖2.
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Lemma 15 Suppose that (ρ, γ, β) are chosen according to (4.30), and the assumptions in Lemma

14 hold true. Then the following holds true for all r ≥ 0

γ(1− ργ)

2
‖λr+1‖2 ≤ P 0

c . (4.45)

Proof 6 We use induction to prove the lemma. The initial step r = 0 is clearly true. In the

inductive step we assume that

γ(1− ργ)

2
‖λr‖2 ≤ P 0

c for some r ≥ 1. (4.46)

Using the fact that the potential function is decreasing (cf. (4.28)), we have

Pc(x
r+1, λr+1;xr, λr) ≤ Pc(x1, λ1;x0, λ0) ≤ P 0

c . (4.47)

Combining (4.47) with (4.32), and use the definition of Pc function in (4.27), we obtain

(1− ργ)2

2ρ
(‖λr+1‖2 − ‖λr‖2) +

γ(1− ργ)

2
‖λr+1‖2 ≤ P 0

c . (4.48)

If ‖λr+1‖ − ‖λr‖ ≥ 0, then we have

γ(1− ργ)

2
‖λr+1‖2 ≤ γ(1− ργ)

2
‖λr+1‖2 +

(1− ργ)2

2ρ
(‖λr+1‖2 − ‖λr‖2)

(4.48)

≤ P 0
c .

If ‖λr+1‖ − ‖λr‖ < 0, then we have

γ(1− ργ)

2
‖λr+1‖2 < γ(1− ργ)

2
‖λr‖2 ≤ P 0

c ,

where the second inequality comes from the induction assumption (4.46). This concludes the proof

of (4.45). Q.E.D.

From Lemma 15, and the fact that ργ = τ ∈ (0, 1), we have

γ‖λr+1‖2 ≤ 2

1− τ
P 0
c , ∀ r ≥ 0. (4.49)

Therefore, we get

γ2‖λr+1‖2 ≤ 2P 0
c

γ

1− τ
, for all r ≥ 0 . (4.50)
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Also note that ρ and β should satisfy (4.30), reStated below

τ := ργ ∈ (0, 1), c >
1

τ
− 1 > 0, β > (3 + 2c)L, ρ ≥ β. (4.51)

Combining the above results, we have the following corollary about the choice of parameters to

achieve ε-stationary solution.

Corollary 1 Consider the following choices of algorithm parameters

γ = min

{
ε,

1

β

}
, ρ =

1

2
max

{
β,

1

ε

}
, β > 7L, c = 2. (4.52a)

Further suppose Assumption A is satisfied, and that Ax0 = b, λ0 = 0. Then the sequence of

dual variables {λr} lies in a bounded set. Further, every limit point generated by the PProx-PDA

algorithm is an ε-stationary solution.

Proof 7 Using the parameters in (4.52a), we have

τ = ργ =
1

2
,

γ

1− ργ
≤ 2ε.

Then we can bound P 0
c by the following

P 0
c =

[
2 + 2(1− ργ)2 + (1− ργ)(c+ ργ)

]
d4 +

c

2
(2σmax(BTB)(d4 +

3L

2
d2) + Ld2)

≤ (6 + 2σmax(BTB))d4 + (3σmax(BTB)L+ L)d2.

Therefore using (4.50) we conclude

γ2‖λr+1‖2 ≤ 2P 0
c

γ

1− ργ
≤ 4((6 + 2σmax(BTB))d4 + (3σmax(BTB)L+ L)d2)ε.

Note that the constant in front of ε is not dependent on algorithm parameters. This implies that

γ2‖λr+1‖2 = O(ε). Q.E.D.

Remark 1 First, in the above result, the ε-stationary solution is obtained by imposing the addi-

tional assumption that the initial solution is feasible, and that λ0 = 0. Admittedly, obtaining a

feasible initial solution could be challenging, but for problems such as distributed optimization (4.7)

and subspace estimation (4.2), finding feasible x0 is relatively easy. Second, the penalty parameter
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could be large because it is inversely proportional to the accuracy. Having a large penalty parameter

at the beginning can make the algorithm progress slowly. In practice one can start with a smaller

ρ and gradually increase it until reaching the predefined threshold. Following this idea, in the next

section we will design an algorithm that allows ρ to increase unboundedly, such that in the limit the

exact first-order stationary solution can be obtained.

Remark 2 We comment that the convergence analysis carried out in this subsection differs from

the recent analysis on nonconvex primal/dual type algorithms, which is first presented in Ames and

Hong [5] and later generalized by [79, 63, 136, 97, 54]. Those analysis has been critically dependent

on bounding the size of the successive dual variables with that of the successive primal variables.

Unfortunately, this can only be done when the primal step immediately preceding the dual step is

smooth and unconstrained. Therefore the algorithms and analysis presented in these works cannot

be applied to our problem (4.1), or the applications mentioned in Section 4.1.1.

4.2.3 Convergence Rate Analysis

In this subsection we briefly discuss the convergence rate of the algorithm.

To begin with, assume that parameters are chosen according to (4.30), and Ax0 = b, λ0 = 0.

Also we will choose 1/ρ and γ proportional to certain accuracy parameter, while keeping τ = ργ ∈

(0, 1) and c fixed to some absolute constants. To proceed, let us define the following quantities

Hr := f(xr) + h(xr) + 〈λr, Axr − b〉, (4.53a)

Gr+1 := ‖∇̃H(xr, λr−1)‖2 +
1

ρ2
‖λr+1 − λr‖2, (4.53b)

Qr := ‖∇̃H(xr, λr−1)‖2 + ‖Axr − b‖2, (4.53c)

where ∇̃Hr is the proximal gradient defined as

∇̃Hr = xr − proxβh+ι(X)

[
xr − 1

β
∇(Hr − h(xr))

]
. (4.54)

It can be checked that Q(xr, λr−1) → 0 if and only if a stationary solution for problem (4.1) is

obtained. Therefore we say that an θ-stationary solution is obtained if Qr ≤ θ.
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Note that the θ-stationary solution has been used in [63] for characterizing the rate for ADMM

method. Compared with the ε-stationary solution defined in Definition 1, its progress is easier to

quantify.

Using the definition of proximity operator, the optimality condition of the x-subproblem (4.12a)

can be equivalently written as

xr+1 = proxβh+ι(X)

[
xr+1 − 1

β

[
∇f(xr) +ATλr+1 + βBTB(xr+1 − xr)

]]
.

By using the non-expansiveness of the prox operator, we obtain the following

‖∇̃Hr‖2 =

∥∥∥∥xr − proxβh+ι(X)

[
xr − 1

β
∇
[
Hr − h(xr)

]] ∥∥∥∥2

=

∥∥∥∥xr+1 − proxβh+ι(X)

[
xr+1 − 1

β

[
∇f(xr) +ATλr+1 + βBTB(xr+1 − xr)

]]
− xr + proxβh+ι(X)

[
xr − 1

β
∇
[
Hr − h(xr)

]] ∥∥∥∥2

≤ 2‖xr+1 − xr‖2 +
4

β2
‖AT (λr+1 − λr)‖2 + 4‖(I −BTB)(xr+1 − xr)‖2

≤ (2 + 4σ2
max(B̂T B̂))‖xr+1 − xr‖2 +

4σmax(ATA)

β2
‖λr+1 − λr‖2,

where in the last inequality we define B̂ := I −BTB. Therefore,

Gr+1 ≤ b1‖λr+1 − λr‖2 + b2‖xr+1 − xr‖2, (4.55)

where b1 = 4σmax(ATA)
β2 + 1

ρ2
, and b2 = 2+4σ2

max(B̂T B̂). Combining (4.55) with the descent estimate

for the potential function Pc given in (4.28), we obtain

Gr+1 ≤ V
[
Pc(x

r, λr;xr−1, λr−1)− Pc(xr+1, λr+1;xr, λr)
]
, (4.56)

where we have defined

V :=
max(b1, b2)

min(a1, a2)
,

and one can check that V is in the order of O(1/γ) because a1 is in the order of γ; cf. (4.28).

Let R denote the first time that Gr+1 reaches below a given number θ > 0. Summing both sides

of (4.56) over R iterations, and utilizing the fact that Pc is lower bounded by P , it follows that

θ ≤
V
(
P 0
c − P

)
R

(4.34)

≤
V
(
P 0
c + (1−ργ)2

2ρ ‖λ1‖2
)

R

(4.43)

≤
V
(
P 0
c + (1− τ)2d4

)
R



www.manaraa.com

110

where d4 is given in (4.40), and P 0
c is given in (4.44). Note that Gr+1 ≤ θ implies that 1/ρ2‖λr+1−

λr‖2 = ‖Axr+1 − b− γλr‖2 ≤ θ. From (4.45) we have that

‖γλr+1‖ ≤

√
2P 0

c γ

1− ργ
, ∀ r ≥ 0.

It follows that

‖Axr+1 − b‖ ≤ 1

ρ
‖λr+1 − λr‖+ ‖γλr‖ ≤

√
θ +

√
2P 0

c γ

1− ργ
.

It follows that whenever Gr+1 ≤ θ we have

Qr := ‖∇̃H(xr, λr−1)‖2 + ‖Axr − b‖2 ≤ θ +

(
√
θ +

√
2P 0

c γ

1− ργ

)2

. (4.57)

Let us pick the parameters such that they satisfy (4.30) and the following

2P 0
c γ

1− ργ
=

2P 0
c γ

1− τ
= θ.

Then whenever Gr+1 ≤ θ, we have Qr ≤ 5θ. It follows that the total number of iteration it takes

for the stationarity gap Qr to reach below 5θ is given by

R ≤
V
(
P 0
c + (1− τ)2d4

)
θ

= O
(

1

θ2

)
, (4.58)

where the last relation holds because V is in the order of O( 1
γ ), γ is chosen in the order of O(θ),

and P 0
c , d4 and τ are not dependent on the problem accuracy. The result below summarizes the

our discussion.

Corollary 2 Suppose that Ax0 = b and λ0 = 0. Additionally, for a given θ > 0, and τ ∈ (0, 1),

choose γ, ρ, c, β as follows

γ =
θ(1− τ)

2P 0
c

, ρ =
τ

γ
, c >

1

τ
− 1, ρ ≥ β, and β > (3 + 2c)L.

Let R denote the first time that Qr reaches below 5θ. Then we have R = O
(

1
θ2

)
.
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4.3 An Algorithm with Increasing Accuracy

So far we shown that PProx-PDA converges to the set of approximate stationary solutions by

properly choosing the problem parameters following (4.30) and (1). The inaccuracy of the algorithm

can be attributed to the use of perturbation parameter γ. Is it possible to gradually reduce the

perturbation so that asymptotically the algorithm reaches the exact stationary solutions? Is it

possible to avoid using very large penalty parameter ρ at the beginning of the algorithm? This

section designs an algorithm that addresses these questions.

We consider a modified algorithm in which the parameters (ρ, β, γ) are iteration-dependent.

In particular, we choose ρr+1, βr+1 and 1/γr+1 to be increasing sequences. The new algorithm,

named PProx-PDA with increasing accuracy (PProx-PDA-IA), is listed in Algorithm 6. Below

Algorithm 6 PProx-PDA with increasing accuracy (PProx-PDA-IA)

Initialize: λ0 and x0

Repeat: update variables by

xr+1 = arg min
x∈X

u(x, xr) + h(x) + 〈(1− ρr+1γr+1)λr, Ax− b〉

+
ρr+1

2
‖Ax− b‖2 +

βr+1

2
‖x− xr‖2BTB. (4.59a)

λr+1 = (1− ρr+1γr+1)λr + ρr+1
(
Axr+1 − b

)
. (4.59b)

Until Convergence.

we analyze the convergence of the new algorithm. Besides assuming that the optimization problem

under consideration satisfies Assumption A, we make the following additional assumptions:
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Assumption B

B1. Assume that

ρr+1γr+1 = τ ∈ (0, 1), for some fixed constant τ.

B2. The sequence {ρr} satisfies

ρr+1 →∞,
∞∑
r=1

1

ρr+1
=∞,

∞∑
r=1

1

(ρr+1)2
<∞,

ρr+1 − ρr = D > 0,

for some D > 0. A simple choice of ρr+1 is ρr+1 = r + 1. Similarly, the sequence {γr+1}

satisfies

γr+1 − γr ≤ 0, γr+1 → 0,
∞∑
r=1

γr+1 =∞,
∞∑
r=1

(γr+1)
2
<∞. (4.60)

B3. Assume that

βr+1 ≥ βr, βr+1 →∞, and
∞∑
r=1

1

βr+1
=∞,

∃ c0 > 1 s.t. βr+1 = c0ρ
r+1, for r large enough. (4.61)

B4. There exists Λ > 0 such that for every r > 0 we have ‖λr‖ ≤ Λ.

We note that Assumption [B4] is somewhat restrictive because it is dependent on the iterates.

In the Appendix we will show that such an assumption can be satisfied under some additional

regularity conditions about problem (4.1). We choose to State [B4] here to avoid lengthy discussion

on those regularity conditions before the main convergence analysis.

Similar to Lemma 11, our first step utilizes the optimality condition of two consecutive iterates

to analyze the change of the primal and dual differences.
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Lemma 16 Suppose that the Assumptions A and [B1]-[B3] hold true, and that τ,D, are constants

defined in assumption B. Then for large enough r, there exists constant C1 such that

(1− τ)

2
‖λr+1 − λr‖2 +

τ

2
(
ρr+1

ρr+2
− 1)‖λr+1‖2 +

βr+1ρr+1

2
‖xr+1 − xr‖2BTB

+
ρr+1L

2
‖xr+1 − xr‖2BTB

≤ (1− τ)

2
‖λr − λr−1‖2 +

τ

2
(
ρr

ρr+1
− 1)‖λr‖2 +

βrρr

2
‖xr − xr−1‖2BTB

+
ρrL

2
‖xr − xr−1‖2BTB −

τ

2
‖λr+1 − λr‖2 +

C1(γr+1)2

2
‖λr+1‖2

+
Lρr +D(L+ βr+1‖BTB‖)

2
‖xr+1 − xr‖2BTB −

βrρr

2
‖wr‖2BTB. (4.62)

Proof 8 Suppose that ξr+1 ∈ ∂h(xr+1). From the optimality condition for x-subproblem (4.59a)

we have for all x ∈ dom(h)

〈∇f(xr) +ATλr+1 + βr+1BTB(xr+1 − xr) + ξr+1, xr+1 − x〉 ≤ 0.

Performing the above inequality for the (r − 1)th iteration, we have

〈∇f(xr−1) +ATλr + βrBTB(xr − xr−1) + ξr, xr − x〉 ≤ 0, ∀ x ∈ dom(h).

Plugging in x = xr in the first inequality, x = xr+1 in the second inequality and add them together,

and use the fact that h is convex, we obtain

〈∇f(xr)−∇f(xr−1) +AT (λr+1 − λr)

+ βr+1BTB(xr+1 − xr)− βrBTB(xr − xr−1), xr+1 − xr〉 ≤ 0. (4.63)

Let us analyze the above inequality term by term. First, using Young’s inequality and the assumption

that f is L-smooth i.e. (4.15) we have

〈∇f(xr−1)−∇f(xr), xr+1 − xr〉 ≤ L

2
‖xr+1 − xr‖2 +

L

2
‖xr − xr−1‖2.
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Second, note that we have

〈AT (λr+1 − λr), xr+1 − xr〉 = 〈λr+1 − λr, A(xr+1 − xr)〉

= 〈λr+1 − λr, Axr+1 − b− γr+1λr + γr+1λr + γrλr−1 − γrλr−1 −Axr + b〉

(4.59b)
= 〈λr+1 − λr, λ

r+1 − λr

ρr+1
+ γr+1λr − γrλr−1 − λr − λr−1

ρr
〉

=
1

ρr
〈λr+1 − λr, λr+1 − λr − (λr − λr−1)〉+

(
1

ρr+1
− 1

ρr

)
‖λr+1 − λr‖2

+ 〈λr+1 − λr, λr − λr−1〉γr + 〈λr+1 − λr, λr〉(γr+1 − γr)

(4.13)
=

1

2

(
1

ρr
− γr

)(
‖λr+1 − λr‖2 − ‖λr − λr−1‖2 + ‖(λr+1 − λr)− (λr − λr−1)‖2

)
+ γr‖λr+1 − λr‖2 +

(
1

ρr+1
− 1

ρr

)
‖λr+1 − λr‖2

+
1

2
(γr+1 − γr)(‖λr+1‖2 − ‖λr‖2 − ‖λr+1 − λr|‖2).

Summarizing, we have

〈AT (λr+1 − λr), xr+1 − xr〉 ≥ 1

2

(
1

ρr
− γr

)(
‖λr+1 − λr‖2 − ‖λr − λr−1‖2

)
+

1

2
(γr+1 − γr)(‖λr+1‖2 − ‖λr‖2)

+

(
1

ρr+1
− 1

ρr
+ γr − 1

2
(γr+1 − γr)

)
‖λr+1 − λr‖2

(B1)
=

1

2

(
1

ρr
− γr

)(
‖λr+1 − λr‖2 − ‖λr − λr−1‖2

)
+

1

2
(γr+1 − γr)(‖λr+1‖2 − ‖λr‖2)

+

(
γr −

(
1

τ
− 1

2

)
(γr − γr+1)

)
‖λr+1 − λr‖2.

Third, notice that

〈βr+1BTB(xr+1 − xr)− βrBTB(xr − xr−1), xr+1 − xr〉
(4.13)

= (βr+1 − βr)‖xr+1 − xr‖2BTB +
βr

2

(
‖xr+1 − xr‖2BTB − ‖x

r − xr−1‖2BTB + ‖wr‖2BTB
)

=
βr+1

2
‖xr+1 − xr‖2BTB −

βr

2
‖xr − xr−1‖2BTB +

βr+1 − βr

2
‖xr+1 − xr‖2BTB +

βr

2
‖wr‖2BTB.
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Therefore, from the above three steps, we can bound (4.63) by

(1− τ)

2ρr
‖λr+1 − λr‖2 +

1

2
(γr+2 − γr+1)‖λr+1‖2 +

βr+1

2
‖xr+1 − xr‖2BTB +

L

2
‖xr+1 − xr‖2

≤ (1− τ)

2ρr
‖λr − λr−1‖2 +

1

2
(γr+1 − γr)‖λr‖2 +

βr

2
‖xr − xr−1‖2BTB

+
L

2
‖xr − xr−1‖2 −

(
γr − (

1

τ
− 1

2
)(γr − γr+1)

)
‖λr+1 − λr‖2 + L‖xr+1 − xr‖2

+
1

2
(γr+2 − γr+1 − (γr+1 − γr))‖λr+1‖2 − βr

2
‖wr‖2BTB. (4.64)

Multiplying ρr on both sides, we obtain

(1− τ)

2
‖λr+1 − λr‖2 +

τ

2
(
ρr+1

ρr+2
− 1)‖λr+1‖2 +

βr+1ρr+1

2
‖xr+1 − xr‖2BTB

+
ρr+1L

2
‖xr+1 − xr‖2

≤ (1− τ)

2
‖λr − λr−1‖2 +

τ

2
(
ρr

ρr+1
− 1)‖λr‖2 +

βrρr

2
‖xr − xr−1‖2BTB

+
ρrL

2
‖xr − xr−1‖2 − ρr

(
γr − (

1

τ
− 1

2
)(γr − γr+1)

)
‖λr+1 − λr‖2

+ Lρr‖xr+1 − xr‖2 +
ρr

2
(γr+2 − γr+1 − (γr+1 − γr))‖λr+1‖2

+
(βr+1)(ρr+1 − ρr)

2
‖xr+1 − xr‖2BTB +

L(ρr+1 − ρr)
2

‖xr+1 − xr‖2 − βrρr

2
‖wr‖2BTB.

where we have used the following fact

0 ≥
(

ρr

ρr+2
− ρr

ρr+1

)
=

ρr

ρr+1

(
ρr+1

ρr+2
− 1

)
≥
(
ρr+1

ρr+2
− 1

)
.

Further, by Assumption B we have ρr+1−ρr = D, also we have ‖xr+1−xr‖2
BTB

≤ ‖BTB‖‖xr+1−

xr‖2. Therefore, we reach

(1− τ)

2
‖λr+1 − λr‖2 +

τ

2
(
ρr+1

ρr+2
− 1)‖λr+1‖2 +

βr+1ρr+1

2
‖xr+1 − xr‖2BTB

+
ρr+1L

2
‖xr+1 − xr‖2

≤ (1− τ)

2
‖λr − λr−1‖2 +

τ

2
(
ρr

ρr+1
− 1)‖λr‖2 +

βrρr

2
‖xr − xr−1‖2BTB

+
ρrL

2
‖xr − xr−1‖2 − τ

2
‖λr+1 − λr‖2 +

C1(γr+1)2

2
‖λr+1‖2

+
Lρr +D(L+ βr+1‖BTB‖)

2
‖xr+1 − xr‖2 − βrρr

2
‖wr‖2BTB, (4.65)

where the last inequality is true using the following relations:
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• To bound the term γr+2 − γr+1 − (γr+1 − γr) we have

γr+2 − γr+1 − (γr+1 − γr) =

(
τ

ρr+2
− τ

ρr+1
− τ

ρr+1
+
τ

ρr

)
= τD

ρr+2 − ρr

ρrρr+1ρr+2
=

2τD2

ρrρr+1ρr+2
.

Thus there exists a constant C1 such that

ρr

2

(
γr+2 − γr+1 − (γr+1 − γr)

)
≤ C1(γr+1)2

2
.

• For large enough r

τ ≥ D(2− τ)

ρr+1
.

The proof of the lemma is complete. Q.E.D.

Now let us analyze the behavior of T (x, λ) which is originally defined in (4.23) in order to bound

the descent of the primal variable. In this case, because T is also a function of ρ and γ (which is

also time varying), we denote it as T (x, λ; ρ, γ).

Lemma 17 Suppose that the Assumptions Assumptions A and [B1]-[B3] hold true, τ and D are

constants defined in Assumption B. Then we have

T (xr+1, λr+1; ρr+2, γr+2) +

(
(1− τ)

γr+2

2
− D(γr+2)2

2τ
+D(γr+2)2

)
‖λr+1‖2

≤ T (xr, λr; ρr+1, γr+1) +

(
(1− τ)

γr+1

2
− D(γr+1)2

2τ
+D(γr+1)2

)
‖λr‖2

−
(
βr+1 − 3L

2

)
‖xr+1 − xr‖2

+ (1− τ)

(
1

ρr+1
− γr+1

2
+

D(γr+1)2

2τ2(1− τ)

)
‖λr+1 − λr‖2

+
(1− τ)(γr+1 − γr+2)

2
‖λr+1‖2 +

D(γr+2)2

2
‖λr+1‖2

+D
(γr+1)2 − (γr+2)2

2τ
‖λr+1‖2. (4.66)
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Proof 9 Following the same analysis as in ](4.25), we have that the T function has the following

descent when only changing the primal variable

T (xr+1, λr; ρr+1, γr+1)− T (xr, λr; ρr+1, γr+1)

≤ −
(
βr+1 − 3L

2

)
‖xr+1 − xr‖2. (4.67)

Second, following (4.26), it is easy to verify that

T (xr+1, λr+1; ρr+1, γr+1)− T (xr+1, λr; ρr+1, γr+1)

≤ (1− τ)

(
‖λr+1 − λr‖2

ρr+1
+
γr+1

2

(
‖λr‖2 − ‖λr+1‖2 − ‖λr+1 − λr‖2

))
≤ (1− τ)

(
‖λr+1 − λr‖2

ρr+1
+
γr+1

2
‖λr‖2 − γr+2

2
‖λr+1‖2

− (
γr+1

2
− γr+2

2
)‖λr+1‖2 − γr+1

2
‖λr+1 − λr‖2

)
. (4.68)

The most involving step is the analysis of the change of T when the parameters ρ and γ are changed.

We first have the following bound

T (xr+1, λr+1; ρr+2, γr+2)− T (xr+1, λr+1; ρr+1, γr+1) (4.69)

= (1− τ)(γr+1 − γr+2)‖λr+1‖2 +
ρr+1 − ρr

2
‖Axr+1 − b‖2

= (1− τ)(γr+1 − γr+2)‖λr+1‖2

+
D

2
‖(Axr+1 − b)− γr+1λr‖2︸ ︷︷ ︸

(a)

− D
2
‖γr+1λr‖2︸ ︷︷ ︸

(b)

+D〈γr+1λr, Axr+1 − b〉︸ ︷︷ ︸
(c)

.

The term (a) in (4.69) is given by

D

2
‖(Axr+1 − b)− γr+1λr‖2 =

D

(ρr+1)2
‖λr+1 − λr‖2. (4.70)

The term (b) in (4.69) is given by

−D
2
‖γr+1λr‖2 = −(γr+1)2D

2
‖λr‖2. (4.71)

The term (c) in (4.69) is given by

D〈γr+1λr, Axr+1 − b〉 = D〈γr+1λr,
λr+1 − λr

ρr+1
+ γr+1λr〉

= D(γr+1)2‖λr‖2 +D
(γr+1)2

2τ
(‖λr+1‖2 − ‖λr‖2 − ‖λr+1 − λr‖2). (4.72)
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So collecting terms, we have

T (xr+1, λr+1; ρr+2, γr+2) +

(
(1− τ)

γr+2

2
− D(γr+2)2

2τ
+
D

2
(γr+2)2

)
‖λr+1‖2

≤T (xr, λr; ρr+1, γr+1) +

(
(1− τ)

γr+1

2
− D(γr+1)2

2τ
+
D

2
(γr+1)2

)
‖λr‖2

− (
βr+1 − 3L

2
)‖xr+1 − xr‖2

+ (1− τ)

(
1

ρr+1
− γr+1

2
+
D(γr+1)2

τ2(1− τ)

)
‖λr+1 − λr‖2

+
1− τ

2
(γr+1 − γr+2)‖λr+1‖2 + (γr+2)2D

2
‖λr+1‖2

+D
(γr+1)2 − (γr+2)2

2τ
‖λr+1‖2. (4.73)

The lemma is proved. Q.E.D.

In the next step we construct and estimate the descent of the potential function. For some given

c > 0, we construct the following potential function

P r+1
c :=T (xr+1, λr+1; ρr+2, γr+2) (4.74)

+

(
(1− τ)

γr+2

2
− D(γr+2)2

2τ
+
D

2
(γr+2)2

)
‖λr+1‖2

+ c

(
(1− τ)

2
‖λr+1 − λr‖2 +

τ

2
(
ρr+1

ρr+2
− 1)‖λr+1‖2

+
βr+1ρr+1

2
‖xr+1 − xr‖2BTB +

ρr+1L

2
‖xr+1 − xr‖2BTB

)
.

Lemma 18 Suppose that the Assumptions A and [B1]-[B3] hold true, and let τ and D be the

constants defined in Assumption B. Then for large enough r we have the following for the potential

function Pc

P r+1
c − P rc ≤−

(
βr+1 − 3L

2
− cLρr − cDL− cβr+1‖BTB‖

)
‖xr+1 − xr‖2

− cτ
4
‖λr+1 − λr‖2 +D0(γr+1)2 − cβ

rρr

2
‖wr‖2BTB, (4.75)

where D0 is a positive constant.
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Proof 10 According to Lemma 16 and Lemma 17, for large enough r we have

P r+1
c − P rc ≤ −

(
βr+1 − 3L

2
− cLρr − cDL− cβr+1‖BTB‖

)
‖xr+1 − xr‖2

−
(
c
τ

2
− (1− τ)

(
1

ρr+1
− γr+1

2
+
D(γr+1)2

τ2(1− τ)

))
‖λr+1 − λr‖2

+
(1− τ)(γr+1 − γr+2)

2
‖λr+1‖2 +

D(γr+2)2

2
‖λr+1‖2 − cβ

rρr

2
‖wr‖2BTB

+D
(γr+1)2 − (γr+2)2

2τ
‖λr+1‖2 + c

C1(γr+1)2

2
‖λr+1‖2. (4.76)

From the properties of perturbation parameter γr given in (4.60) we can observe that

γr+1 − γr+2 ≤ D

τ
γr+1γr+2 ≤ D

τ
(γr+1)2.

Utilizing this result together with the Assumption [B6] related to dual variable λ, we obtain the

following relations for large enough r

(1− τ)(γr+1 − γr+2)

2
‖λr+1‖2 ≤ D (1− τ)(γr+1)2Λ

2τ
. (4.77)

Similarly we also have

c
C1(γr+1)2

2
‖λr+1‖2 ≤ cC1Λ(γr+1)2

2
.

Moreover, since (γr+1)2 − (γr+2)2 ≤ (γr+1)2, and γr+2 ≤ γr+1, we have

D
(γr+1)2 − (γr+2)2

2τ
‖λr+1‖2 ≤ DΛ

2τ
(γr+1)2,

(γr+2)2D

2
‖λr+1‖2 ≤ DΛ

2
(γr+1)2. (4.78)

Let us set

D0 :=
D(1− τ)Λ

2τ
+
cC1Λ

2
+
DΛ

2τ
+
DΛ

2
,

which adds up the constants in front of (γr+1)2 in the above terms. We can therefore bound the

difference of the potential function by

P r+1
c − P rc ≤ −

(
βr+1 − 3L

2
− cLρr − cDL− cβr+1‖BTB‖

)
‖xr+1 − xr‖2

−
(
c
τ

2
− (1− τ)

(
1

ρr+1
− γr+1

2
+
D(γr+1)2

τ2(1− τ)

))
‖λr+1 − λr‖2

+D0(γr+1)2 − cβ
rρr

2
‖wr‖2BTB. (4.79)
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Since (1− τ)
(

1
ρr+1 − γr+1

2 + D(γr+1)2

τ2(1−τ)

)
→ 0, we can find r0 large enough such that for r ≥ r0

(1− τ)

(
1

ρr+1
− γr+1

2
+

D(γr+1)2

2τ2(1− τ)

)
≤ cτ

4
. (4.80)

Thus, for r ≥ r0 we have

P r+1
c − P rc ≤−

(
βr+1 − 3L

2
− cLρr − cDL− cβr+1‖BTB‖

)
‖xr+1 − xr‖2

− cτ
4
‖λr+1 − λr‖2 +D0(γr+1)2 − cβ

rρr

2
‖wr‖2BTB. (4.81)

The claim is proved. Q.E.D.

Note that by Assumption B we have that

∞∑
r=1

(γr+1)2 <∞. (4.82)

Therefore to ensure the potential function decrease eventually, we need to pick the constants in the

following way [note that by (4.61), c0ρ
r+1 = βr+1]

c0ρ
r+1 − 3L

2
− cLρr − cDL− cc0ρ

r+1‖BTB‖ ≥ 0. (4.83)

It is clear that if constant c is picked such that

0 < c ≤ c0

2(L+ c0‖BTB‖)
. (4.84)

Then the above inequality is satisfied for large enough r.

In this step we show that the potential function is lower bounded.

Lemma 19 Suppose that the Assumptions A and [B1]-[B3] hold true, and that the constant c is

chosen such that

0 < c ≤ 1− τ
D

. (4.85)

Then the potential function P rc defined in (4.74) is lower bounded.
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Proof 11 Let us rearrange the terms of the potential function

P r+1
c = T (xr+1, λr+1; ρr+2, γr+2) (4.86)

+

(
(1− τ)D(γr+2)2

2τ
+

(1− τ − cD)γr+2

2

)
‖λr+1‖2

+ c

(
(1− τ)

2
‖λr+1 − λr‖2 +

βr+1ρr+1

2
‖xr+1 − xr‖2BTB +

Lρr+1

2
‖xr+1 − xr‖2

)
.

First of all, we note that if we set 0 < c ≤ 1−τ
D then the coefficient in front of ‖λr+1‖2 is positive.

Let us analyze T (xr+1, λr+1; ρr+2, γr+2). We have the following

〈λr+1 − ρr+2γr+2λr+1, Axr+1 − b− γr+2λr+1〉

=
1− τ
ρr+1

〈λr+1, λr+1 − λr〉+ (1− τ)〈λr+1, γr+1λr − γr+2λr+1〉

=
1− τ
ρr+1

〈λr+1, λr+1 − λr〉+ (1− τ)γr+1〈λr+1, λr − λr+1〉

+ (1− τ)(γr+1 − γr+2)‖λr+1‖2

≥
(

1− τ
ρr+1

− (1− τ)γr+1

)
〈λr+1, λr+1 − λr〉

=
1

2ρr+1
(1− τ)2(‖λr+1‖2 − ‖λr‖2 + ‖λr+1 − λr‖2)

≥ (1− τ)2

2
(

1

ρr+1
‖λr+1‖2 − 1

ρr
‖λr‖2). (4.87)

It follows that the sum
∑∞

r=1 T (xr+1, λr+1; ρr+2, γr+2) is lower bounded. The claim can then be

proved by using a similar argument as in Lemma 13. Q.E.D.

Finally we put all the previous lemmas together to present the main convergence results for the

PProx-PDA-IA.

Theorem 8 Suppose that Assumptions A–B hold true, and that τ , c and D are picked such that

(4.84) and (4.85) are satisfied. Then every limit point of the sequence generated by PProx-PDA-IA

is a stationary solution of problem (4.1).

Proof 12 In this proof we pick a special case of B satisfying BTB = I, in order to avoid unnec-

essarily complicated notation. The proof is a modification of the classical result in [15, Proposition

3.5].
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Combining Lemma 16 and Lemma 19, we have

∞∑
r=1

βr+1‖xr+1 − xr‖2 <∞,
∞∑
r=1

‖λr+1 − λr‖2 <∞, (4.88)

∞∑
r=1

(βr+1)2‖(xr+1 − xr)− (xr − xr−1)‖2 <∞. (4.89)

From (4.88) we have λr+1 − λr → 0, which implies that From (4.89), we have

(ρr+1)(Axr+1 − b)− τλr → 0. (4.90)

Combined with the fact that λr is bounded, and ρr+1 →∞, we conclude

Axr+1 − b→ 0. (4.91)

Let (x∗, λ∗) be a limit point of (xr+1, λr+1). Comparing the optimality condition of the prob-

lem (4.1) and the optimality condition of x-subproblem (4.59a), in order to argue convergence to

stationary solutions, we need to show

βr+1‖xr+1 − xr‖ → 0. (4.92)

Next we show such a claim. To proceed, let us define

vr+1 := βr+1(xr+1 − xr). (4.93)

From (4.89), it is easy to show that

‖vr+1 − vr‖ = ‖βr+1(xr+1 − xr)− βr(xr − xr−1)‖ → 0. (4.94)

From the first inequality in (4.88), we have

∞∑
r=1

1

βr+1
‖vr+1‖2 → 0. (4.95)

This relation combined with Assumption [B3] implies: lim inf ‖vr+1‖ = 0.

Let us pass a subsequence K to (xr, λr) and denote (x∗, λ∗) as its limit point. For notational

simplicity, in the following the index set {r} all belongs to the set K. We already know from the
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previous argument that lim infr→∞ ‖vr+1‖ = 0. Then it is clear that limr→∞ ‖vr+1‖ = 0 if and only

the following condition is true

lim
r→∞

‖vr+1 − vr+t‖ = 0, ∀ t > 0. (4.96)

Let us construct a new sequence

zr+1 = ATλr+1 + vr+1. (4.97)

Clearly lim infr→∞ z
r+1 = ATλ∗, because along the subsequence λr converges to λ∗. It is also easy

to show that (4.96) is true if and only if the following is true

lim
r→∞

‖zr+1 − zr+t‖ = 0, ∀ t > 0. (4.98)

Suppose that (4.98) is not true. Hence there exists an ε > 0 such that ‖zr‖ < ‖ATλ∗‖ + ε/2 for

infinitely many r, and ‖zr+1‖ > ‖ATλ∗‖+ ε/2 for infinitely many r. Then there exists an infinite

subset of iteration indices R such that for each r ∈ R, there exits a t(r) such that

‖zr‖ < ‖ATλ∗‖+ ε/2, ‖zt(r)‖ > ‖ATλ∗‖+ ε,

‖ATλ∗‖+ ε/2 < ‖zt‖ ≤ ‖ATλ∗‖+ ε, ∀ r < t < t(r).

(4.99)

Also from the fact that ‖vr+1−vr‖ → 0 and ‖λr+1−λr‖ → 0, we can conclude that ‖zr+1−zr‖ → 0.

Therefore, we must have

‖zr‖ ≥ 3ε

8
+ ‖ATλ∗‖. (4.100)

Let r be large enough such that

∣∣‖ATλ∗‖ − ‖ATλr‖∣∣ ≤ ‖AT (λ∗ − λr)‖ ≤ ε

4
. (4.101)

Then we have

‖vt‖ ≤ ‖ATλt‖+ ‖ATλ∗‖+ ε ≤ 2(‖ATλ∗‖+ ε), ∀ r < t < t(r), (4.102a)

‖vt‖ ≥ ‖zt‖ − ‖ATλt‖
(4.101)

≥ ‖zt‖ − ‖ATλ∗‖ − ε

4

(4.99)

≥ ε

4
, ∀ r < t < t(r). (4.102b)

‖vr‖ ≥ ‖zr‖ − ‖ATλr‖ ≥ ‖zr‖ − ‖ATλ∗‖ − ε

4

(4.100)

≥ ε

8
. (4.102c)
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From the definition of t(r) we have that for all r ∈ R the following is true

ε

2
≤ ‖zt(r)‖ − ‖zr‖ ≤

t(r)−1∑
t=r

‖zt+1 − zt‖. (4.103)

Next, we make the following simplification that X ≡ R and h ≡ 0 to avoid lengthy discussion.

The subsequent proof holds true for the general case as well, using the same techniques presented

in [119, Theorem 4]. From the optimality condition (4.63), and with the above simplification, we

obtain

zt+1 − zt = ∇f(xt)−∇f(xt−1), (4.104)

which implies that

‖zt+1‖ − ‖zt‖ ≤ L‖xt − xt−1‖ =
L

βt
‖vt‖. (4.105)

Combining this result with (4.103), we obtain

ε

2
< L

t(r)−1∑
t=r

1

βt
‖vt‖

(4.102a)

≤ 2L(‖ATλ∗‖+ ε)

t(r)−1∑
t=r

1

βt
. (4.106)

Which implies that

ε

4L(‖ATλ∗‖+ ε)
≤

t(r)−1∑
t=r

1

βt
. (4.107)

Using the descent of the potential function (4.79) we have, for r ∈ R and r large enough

P t(r)c − P rc ≤ −
t(r)−1∑
t=r

C5

βt+1
‖vt+1‖2 +

t(r)−1∑
t=r

C3(γt+1)2‖λt+1‖2

≤ − C5

L(‖ATλ∗‖+ ε)

ε2

64
(4.108)

where the last inequality we have used the fact that

lim
R0→∞

∞∑
r=R0

C3(γt+1)2‖λt+1‖2 → 0,

and equations (4.102b) and (4.107). This means that the potential function goes to −∞, a contra-

diction. Therefore we conclude that

lim
r→∞

‖zr+1 − zr+t‖ = 0, ∀ t > 0. (4.109)



www.manaraa.com

125

which further implies that

lim
r→∞

‖vr+1 − vr+t‖ = 0, ∀ t > 0. (4.110)

Combined with the fact that lim inf ‖vr+1‖ = 0, we conclude that

lim
r→∞

‖vr+1‖ = 0. (4.111)

We conclude that every limit point of the sequence is a KKT point. Q.E.D.

4.4 Numerical Results

In this section, we customize the proposed algorithms to a number of applications in Section

4.1.1, and compare with the State-of-the-art algorithms.

4.4.1 Distributed Nonconvex Quadratic Problem

In this subsection we consider the nonconvex `1 penalized, nonnegative, sparse principal com-

ponent analysis (SPCA) problem [8]. Distributed version of this problem [which is a special case

of problem (4.1)] can be modeled as below

min
x

N∑
i=1

−x>i Σixi + α‖xi‖1 (4.112)

s.t. ‖xi‖2 ≤ 1, xi ≥ 0, i = 1, · · · , N

Ax = 0; Consensus Constraint

where xi ∈ Rr for each i; x := {xi}Ni=1 stacks all xi’s, Σi ∈ Rd×d is the covariance matrix for

the mini-batch data in node i; α > 0 is a constant that controls the sparsity. Let us define

x̄ := 1
N

∑N
i=1 xi, h(x̄) := α‖x̄‖1, f(x̄) :=

∑N
i=1 x̄

TΣix̄, and X := {xi | ‖x̄‖2 ≤ 1, x̄ ≥ 0}. The

stationary gap and the constraint violation for this problem is defined as below

staionary-gap =

∥∥∥∥x̄− proxh+ιX [x̄−∇f(x̄)]

∥∥∥∥2

, con-vio = ‖Ax‖2. (4.113)

At this point, one can certainly use Algorithm 1 or Algorithm 2 to solve problem (4.112). However,

the resulting x- subproblems for both algorithms are difficult to solve due to the fact that computing
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the proximity operator for nonsmooth function α‖x‖1 + ι‖x‖2≤1(x) + ιx≥0(x) does not have a closed

form (where ιX(x) represents the indicator function for convex set X). On the contrary, the

proximity operators for the individual component functions all have closed-form. To utilize such a

problem structure, we divide the agents into three subsets, each with a distinctive regularizer. Let

us denote r = bN/3c. The new reformulation is given below

min
r∑
i=1

(
− x>i Σixi +

Nα

r
‖xi‖1

)
−

2r∑
i=r+1

x>i Σixi −
N∑

i=2r+1

x>i Σixi (4.114)

s.t. ‖xi‖2 ≤ 1, i = r + 1, · · · , 2r

xi ≥ 0, i = 2r + 1, · · · , N

Ax = 0 Consensus Constraint.

To the best of our knowledge, no existing methods for nonconvex distributed optimization can

effectively deal with the above problem (at least not with theoretical convergence guarantee to

stationary solution). The major difficulty is to deal with the agent-specific nonsmooth terms. For

comparison purpose, we consider the DSG algorithm [102], and the NEXT algorithm [92]. In our

numerical result, the graph G is generated based on the scheme proposed in [141]. In this scheme a

random graph with N nodes and radius R is generated with nodes uniformly distributed over a unit

square, and two nodes connect to each other if their distance is less than R. The test problems

are generated in the following manner. The number of agents, the network radius, the problem

dimension, and the sparsity parameter to be N = 20, R = 0.7, d = 10, α = 0.01, respectively. For

PProx-PDA algorithm we set perturbation parameter γ = 10−4, and ρ and β are picked such that

they satisfy the theoretical bounds given in (4.51). For PProx-PDA-IA we set the increasing penalty

ρ = β = 40r, and decreasing perturbation γ = 10−3/r. For the DSG algorithm the stepsize is set

0.1/r (this choice is made so that DSG has the best performance). The parameters for NEXT are

tuned according to the description in [92, Theorem 3]. Each algorithm is run for 20 independents

trials, with random initialization and randomly generated data. The results are plotted in Fig. 4.1

and 4.2. In the figures, dashed lines with light colors are used to show the performance for each

individual trial, while the solid dark lines are the average performance over all 20 trials. From the
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plots it can be observed that the proposed algorithms, especially the increasing stepsize version,

outperform both DSG and NEXT.
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Figure 4.1: Comparison of proposed algorithms

with DSG [102] and NEXT [92] in terms of sta-

tionary gap for problem 4.114 with parameters

N = 20, R = 0.7, d = 10, α = 0.01.
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Figure 4.2: Comparison of proposed algorithms

with DSG [102] and NEXT [92] in terms of con-

straint violation for problem 4.114 with param-

eters N = 20, R = 0.7, d = 10, α = 0.01.

To see more numerical results we compare different algorithms with different problem setups.

The algorithms are run for 20 independent trials with randomly generated data and random initial

solutions in each individual trials. All algorithm parameters are set to be the same as in the

previous experiment. The comparison results are displayed in Table 4.1. The first column describes

the problem parameters including number of agents N , number of variables n, and the network

radius R, while ‘Alg1’ and ‘Alg2’ stand for PProx-PDA and PProx-PDA-IA, respectively. It can

be observed that in all scenarios the proposed algorithms outperform DSG.

Table 4.1: Comparison of proposed algorithms with DSG algorithm. Alg1 and Alg2 denote PProx-

PDA and PProx-PDA-IA algorithms respectively.

Stationary-Gap Cons-Vio
Parameters Alg1 Alg2 DSG Alg1 Alg2 DSG

N = 5, n = 80, R = 0.7 1.9E-4 6.0E-5 9.0E-4 6.0E-6 9.5E-7 4.3E-5
N = 20, n = 15, R = 0.7 1.3E-4 5.0E-8 9.4E-5 1.7E-3 6.8E-6 0.013
N = 30, n = 20, R = 0.5 6.3E-5 2.1E-8 2.6E-4 7.0E-3 6.4E-7 0.06
N = 40, n = 30, R = 0.5 2.0E-4 4.9E-8 1.5E-3 8.1E-3 1.5E-6 0.05

4.4.2 Nonconvex subspace estimation

In this subsection we study the problem of sparse subspace estimation (4.2). We compare the

proposed PProx-PDA and PProx-PDA-IA with the ADMM algorithm proposed in [49, Algorithm
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1]. Note that the latter is a heuristic algorithm that does not have convergence guarantee. We first

consider a problem with the number of samples, problem dimension, and MCP parameters chosen

as n = 80, p = 128, ν = 3, b = 3, respectively. For PProx-PDA we set perturbation parameter

γ = 10−4, and ρ and β are chosen to satisfy the theoretical bounds given in (4.51). For PProx-

PDA-IA we set increasing penalty ρ = β = 5r, and decreasing perturbation γ = 10−4/r. The data

set is generated following the same procedure as in [49]. In particular, we set s = 5 and k = 1, the

leading eigenvalue of its covariance matrix Σ is set as ν1 = 100, and its corresponding eigenvector

is sparse such that only the first s = 5 entries are nonzero, and they take the value 1/
√

5. The

rest of the eigenvalues are set to be 1, and their eigenvectors are chosen arbitrarily. For all three

algorithms we measure the stationarity gap, the constraint violation.The result, which are from

20 independent trials with random initial solutions, are plotted in Fig. 4.3– 4.4. As shown in these

figures, compared to the ADMM algorithm, the PProx-PDA-IA algorithm converges faster, and to

better solutions.
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Figure 4.3: Comparison of proposed algorithms

with ADMM in terms of stationary gap for non-

convex subspace estimation problem with MCP

Regularization. The solid lines and dotted lines

represent the single performance and the aver-

age performance, respectively.

0 10 20 30 40 50 60 70 80 90 100
10-10

10-8

10-6

10-4

10-2

100

PProx-PDA-IA
ADMM =5
ADMM =2

Figure 4.4: Comparison of proposed algorithms

with ADMM in terms of constraint violation

‖Ax‖2 for nonconvex subspace estimation prob-

lem with MCP Regularization. The solid lines

and dotted lines represent the single perfor-

mance and the average performance, respec-

tively.

Our next experiment is designed to see the effect that the problem parameters (i.e. n, p, k, and

s) have on the solution quality. Here, we compare the PProx-PDA-IA [with ρ = O(r), γ = O(1/r)]

with ADMM algorithm with stepsize ρ = 5. Both algorithms will be run for 200 iterations. In this
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Figure 4.5: Comparison of proposed algorithms with ADMM in terms of Global Error for non-

convex subspace estimation problem with MCP Regularization. The problem parameters are n =

80, p = 128, ν = 3, b = 3. The solid lines and dotted lines represent the single performance and

the average performance, respectively.

experiment we generate data sets with s = 10, k = 5, and vary other problem parameter. For this

dataset the top five eigenvalues are set as λ1 = · · · = λ4 = 100 and λ5 = 10. To generate their

corresponding eigenvectors we sample its nonzero entries from a standard Gaussian distribution,

and then orthnormalize them while retaining the first s = 10 rows to be nonzero [49]. The rest of

the eigenvalues are set as λ6 = · · · = λp = 1, and the associated eigenvectors are chosen arbitrarily.

The results in terms of the error ‖Π̂ − Π∗‖ are shown in Table 4.2. In all scenarios the proposed

algorithm PProx-PDA-IA outperforms ADMM.

Further, the True Positive Rate (TPR) and False Positive Rate (FPR) [70] are measured and

the results are displayed in Table 4.3 to see the recovery results. For this problem the event of

being zero in vector v = |supp(diag(Π̂))| (here Π̂ denotes the output of the algorithm) is considered

as positive event. Let P denotes the number of positives, and S denotes the number of non-zeros

in the ground truth vector denoted by Π∗. Further, let us use FP and TP to denote false positive

and true positive respectively. In particular, FP counts the number of positive events (i.e. zeros

in our case) in vector Π̂ which are nonzero in ground truth vector Π∗. In contrast, TP counts the

number of zeros in Π̂ which are true zeros in Π∗. Given these notations, the FPR and TPR are
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Table 4.2: Comparison of PPox-PDA-IA with ADMM in terms of Global Error ‖Π̂ − Π∗‖ for

nonconvex subspace estimation problem with MCP Regularization.

‖Π̂−Π∗‖
Parameters PProx-PDA-IA ADMM

n = 30, p = 128, k = 1, s = 5 0.045± 0.02 0.052± 0.02

n = 80, p = 128, k = 1, s = 5 0.024± 0.01 0.028± 0.08

n = 120, p = 128, k = 1, s = 5 0.020± 0.07 0.021± 0.06

n = 150, p = 200, k = 1, s = 5 0.022± 0.07 0.022± 0.07

n = 80, p = 128, k = 1, s = 10 0.048± 0.01 0.062± 0.01

n = 80, p = 128, k = 5, s = 10 0.21± 0.05 0.29± 0.02

n = 128, p = 128, k = 5, s = 10 0.18± 0.02 0.25± 0.02

n = 70, p = 128, k = 5, s = 10 0.26± 0.03 0.33± 0.03

Table 4.3: Recovery results for PPox-PDA-IA and ADMM in terms of TPR and FPR.

TPR FPR
Parameters PProx-PDA-IA ADMM PProx-PDA-IA ADMM

n = 30, p = 128, k = 1, s = 5 1.0± 0.0 1.0± 0.0 0.00± 0.00 0.00± 0.00
n = 80, p = 128, k = 1, s = 5 1.0± 0.0 1.0± 0.0 0.00± 0.00 0.00± 0.00
n = 120, p = 128, k = 1, s = 5 1.0± 0.0 1.0± 0.0 0.00± 0.00 0.00± 0.00
n = 150, p = 200, k = 1, s = 5 1.0± 0.0 1.0± 0.0 0.00± 0.00 0.00± 0.00
n = 80, p = 128, k = 1, s = 10 1.0± 0.0 1.0± 0.0 0.00± 0.00 0.00± 0.00
n = 80, p = 128, k = 5, s = 10 1.0± 0.0 1.0± 0.0 0.53± 0.03 0.56± 0.04
n = 128, p = 128, k = 5, s = 10 1.0± 0.0 1.0± 0.0 0.57± 0.01 0.59± 0.02
n = 70, p = 128, k = 5, s = 10 1.0± 0.0 1.0± 0.0 0.53± 0.05 0.54± 0.01

defined as follows

FPR =
FP

S
, TPR =

TP

P
. (4.115)

In terms of TPR both algorithms work perfectly well. However, PProx-PDA-IA gets lower FPR

compare to the ADMM algorithm.

4.4.3 Partial Consensus

The partial consensus optimization problem has been introduced in (4.8). As Stated in the

introduction, we are not aware of any existing algorithm that is able to perform nonconvex partial

consensus optimization with guaranteed performance. Let us consider regularized logistic regression

problem [7] in a network with N nodes, in mini-bach setup i.e. each node stores b (batch size) data

points, and each component function is given by
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fi(xi) =
1

Nb

[ b∑
j=1

log(1 + exp(−yijxTi vij)) +

M∑
k=1

β̂α̂x2
i,k

1 + α̂x2
i,k

]
,

where vij ∈ RM and yij ∈ {1,−1} are the feature vector and the label for the jth date point in

i-th agent, α̂ and β̂ are the regularization parameters [7].

We set N = 20, M = 10, b = 100, β̂ = 0.01, α̂ = 1. The graph G is generated similar to

the problem in subsection 4.4.1. The PProx-PDA and PProx-PDA-IA algorithms are implemented

for the above problem. Both algorithms stop after 1000 iterations, and we measure the averaged

performance over 20 trials, where in each trial the data matrix and the initial solutions are generated

randomly independent. In Fig. 4.6 the stationary gap for the problem has been plotted. It can be

observed that the gap is vanishing as the algorithm proceeds, and it appears that PProx-PDA-IA

is faster than PProx-PDA. Fig. 4.7 displays the constraint violation for the PProx-PDA algorithm.

It is also interesting to observe that when reducing the constraint violation error (represented by

ζ > 0), the resulting solution indeed achieves higher degrees of consensus.
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Figure 4.6: The stationary gap achieved by

the proposed methods for the partial consen-

sus problem. The solid lines and dotted lines

represent the single performance and the av-

erage performance, respectively.
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Figure 4.7: Constraint Violation ‖Ax‖
achieved by the proposed methods for the

partial consensus problem with different per-

missible tolerance ζ.

4.5 Conclusion

In this paper, we have proposed perturbed primal-dual based algorithms for optimizing noncon-

vex and linearly constrained problems. The proposed methods are of Uzawa type, in which a primal

gradient descent step is performed followed by a (approximate) dual gradient ascent step. We have

performed theoretical analysis for the convergence of the algorithm, and tested their performance
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on a number of statistical and engineering applications. In the future, we plan to investigate, both

in theory and in practice, whether the perturbation is necessary for primal-dual type algorithms to

reach stationary solutions. Further, we plan to extend the proposed algorithms to problems with

stochastic objective functions.

Acknowledgment. The authors would like to thanks Dr. Quanquan Gu who provided us with

the codes to perform the numerical results in [49].

4.6 Appendix. Constraint qualification

In this section, we justify Assumption [B4], which imposes the boundedness of the dual variable.

In particular, we discuss two situations in which the dual variables are guaranteed to be bounded.

Throughout this section, we will assume that Assumption A and [B1]-[B3] hold true.

Case 1). In this case, we make use of some constraint qualification to argue the boundedness of

the dual variables.

Assume that the so-called Robinson’s condition is satisfied for problem (4.1) at x̂ [114, Chap.

3]. This means the following holds{
Adx

∣∣∣∣ dx ∈ TX(x̂)

}
= RM , (4.116)

where dx is the tangent direction for convex set X, and TX(x̂) is the tangent cone to the feasible

set X at the point x̂. Utilizing this assumption we prove that the dual variable is bounded.

Lemma 20 Suppose that the Robinson’s condition holds true for problem (4.1). Then the sequence

of dual variable λr generated by (4.59b) is bounded.

Proof 13 Let us argue by contradiction. Suppose that the dual variable is not bounded, i.e.,

‖λr‖ → ∞. (4.117)

Using Assumption [B3] we have the following identity (for large enough r)

βr+1ρr+1

2
‖xr+1 − xr‖2 =

(βr+1)2

2c0
‖xr+1 − xr‖2. (4.118)



www.manaraa.com

133

From Lemma 18, we have that [also cf. (4.88)]

∞∑
r=1

‖λr+1 − λr‖2 <∞, (4.119)

which implies that

1

ρr+1
‖λr+1‖2 − 1

ρr
‖λr‖2 → 0. (4.120)

Plugging this result into (4.87), we conclude that the following inner product is lower bounded

〈λr+1 − ρr+2γr+2λr+1, Axr+1 − b− γr+2λr+1〉,

and this further implies that T (xr+1, λr+1; ρr+2, γr+2) is lower bounded [by using the definition of

T function in (4.23)]. By Lemma 19 (resp. Lemma 18), we conclude that the potential function is

lower (resp. upper) bounded. Examine the definition of the potential function in (4.86) and use the

choice of c in (4.85) we conclude that except T (xr+1, λr+1; ρr+2, γr+2), all the rest of the terms are

all nonnegative. Using the lower boundedness of T , we conclude that the term βr+1ρr+1

2 ‖xr+1−xr‖2

in the potential function is bounded. Therefore, there exists D1 such that

βr+1‖xr+1 − xr‖ ≤ D1. (4.121)

Note that all the results mentioned above do not assume the boundedness of the dual variable.

From the optimality condition of xr+1 we have for all x ∈ X

〈∇f(xr) + ξr+1 +ATλr+1 + βr+1BTB(xr+1 − xr), x− xr+1)〉 ≥ 0.

Note that βr+1‖xr+1−xr‖ is a bounded sequence, so does βr+1BTB(xr+1−xr). Suppose that {λr}

is not bounded, let us define a new bounded sequence as µr = λr/‖λr‖. Let (x∗, µ∗) be a limit point

of {xr+1, µr+1}. Assume that the Robinson’s condition holds at x∗. Dividing both sides of the above

inequality by ‖λr+1‖ we obtain for all x ∈ X

〈∇f(xr)/‖λr+1‖+ ξr+1/‖λr+1‖+ATµr+1

+ βr+1BTB(xr+1 − xr)/‖λr+1‖, x− xr+1〉 ≥ 0.
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Passing limit, and utilizing the assumption that ‖λr+1‖ → ∞, and that X is a compact set, we

obtain

〈ATµ∗, x− x∗〉 ≥ 0, ∀ x ∈ X.

Utilizing the Robinson’s condition, we know that there exists a scaling constant c > 0 that such

c〈A, x − x∗〉 = −µ∗. Therefore we must have µ∗ = 0. However, this contradicts to the fact that

‖µ∗‖ = 1. Therefore, we conclude that {λr} is a bounded sequence. Q.E.D.

Case 2). In this section, we verify Assumption [B4] by further imposing conditions on the con-

straint set and the nonsmooth terms.

Specifically we consider the following problem

min
{xk}

f(x) + h(x) := f(x) +
K∑
k=1

hk(xk) s.t.
K∑
k=1

Akxk = b, (4.122)

where hk is a convex nonsmooth term that can include both regularizer and indicator functions for

convex set X. Setting K = 1, the above problem is equivalent to the original problem (4.1).

Assumption C. Assume that for one of the block, say K satisfies the following:

XK = RnK , ∂hK has bounded domain. (4.123)

Note that the second of the above condition is possible for example when hK(xK) = ‖xK‖q for

some constant q ≥ 1. Further, we assume that the partial gradient of f with respect to xK , denoted

by ∇Kf(x), is bounded for all xK ∈ dom (hK), and that AK has full row rank.

Given the above assumption, the following lemma characterizes the bound for the dual variable.

Lemma 21 Suppose that the Assumption C holds true. Then there exists constant Λ such that

‖λr+1‖2 ≤ Λ, ∀ r ≥ 0, (4.124)

Proof 14 First, from the optimality condition of x-update (4.59a) we have that for all k, and for

all xk ∈ dom(hk)

〈∇kf(xr) +ATk λ
r+1 + βr+1BTB(xr+1

k − xrk) + ξr+1
k , xr+1

k − xk〉 ≤ 0, (4.125)
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where ∇kf(xr) denotes the partial derivative of f(x) with respect to the block variable xk at x = xr;

and ξr+1
k ∈ ∂hk(xr+1). In particular for the block K because it is unconstrained, we have

0 = ∇Kf(xr) +ATKλ
r+1 + ξr+1

K + βr+1BTB(xr+1
K − xrK). (4.126)

Rearranging terms, we obtain

−ATKλr+1 = ∇Kf(xr) + ξr+1
K + βr+1BTB(xr+1

K − xrK). (4.127)

From Assumption C we know that theres exists M0 such that ‖∇Kf(xr) + ξr+1
K ‖ ≤ M0. Together

with the previous identity, we get

‖ATKλr+1‖2 ≤ 2M2
0 + 2(βr+1)2‖BTB(xr+1

K − xrK)‖2 ∀ r. (4.128)

Utilizing the fact that σ2
K‖λr+1‖2 ≤ ‖ATKλr+1‖2, where σ2

K denoted the smallest nonzero eigenvalue

of ATKAK , we further have

‖λr+1‖2 ≤ 2

σ2
K

[
(βr+1)2‖BTB(xr+1

K − xrK)‖2 +D2
0

]
∀ r. (4.129)

Here σK > 0 because we have assumed that ATK is full column rank in Assumption C. Combining

this with equation (4.121) one can find constant Λ such that ‖λr+1‖2 ≤ Λ. The proof is complete.

Q.E.D.

Appendix B

In this section we show how the sufficient conditions developed in Appendix A can be applied

to problems discussed in Section 4.1.1. Specifically, we will focus on the sparse subspace estimation

problem (4.5) and the inexact consensus problem (4.8).

We first show that Assumption C is satisfied for sparse subspace estimation problem (4.5). Re-

call that for this problem we have two block variables (Π,Φ), and h(Φ) := ‖Φ‖1 =
∑p

i=1

∑p
j=1 |φij |.
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The subdifferential the `1 function can be expressed below, and it is obviously is bounded

∂|φij | =



1 if φij > 0;

[−1, 1] if φij = 0;

−1 if φij < 0.

Then we show that ∇Φf(Π,Φ) is bounded where f(Π,Φ) =
〈
Σ̂,Π

〉
+ qν(Φ), and ∇Φf(Π,Φ) =

∇Φqν(Φ). For the MCP regularization with parameter b, we have qν(Φ) =
∑p

i=1

∑p
j=1 qν(φij),

where

qν(φij) =


−φ2ij

2b if |φij | ≤ bν;

−ν|φij |+ bν2

2 if |φij | > bν.

Also, for qν(φij) one can simply check that

∂qν(φij)

∂φij
=


−φij
b if |φij | < bν;

−ν sign(φij) if |φij | > bν.

This is obviously a bounded function. Finally the matrix AΦ = −I is full row rank matrix. In

summary, we have validated all the conditions in Assumption C.

Next we consider the partial consensus problem given in (4.8). To proceed, we note that the

Robinson’s condition reduces to the well-known Mangasarian-Fromovitz constraint qualification

(MFCQ) if we set X = RN , and write out explicitly the inequality constraints as g(x) ≤ 0. [114,

Lemma 3.17]. To State the MFCQ, consider the following optimization problem

min
y∈RN

f(y) (4.130)

s.t. p(y) = 0;

g(y) ≤ 0,

where f : RN → R, p : RN → RM and g : RN → RP are all continuously differentiable functions.

For given feasible solution ŷ let us use A(ŷ) to denote the indices for active inequality constraints,
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that is

A(ŷ) := {1 ≤ j ≤ P s.t. gj(ŷ) = 0}. (4.131)

Then MFCQ holds for optimization problem (4.130) at point ŷ if we have: 1) The rows of Jacobian

matrix of p(y) denoted by ∇p(ŷ) are linearly independent. 2) There exists a vector dy ∈ RN such

that

∇p(ŷ)dy = 0,∇gj(ŷ)Tdy < 0, ∀ j ∈ A(ŷ). (4.132)

Below we show that MFCQ holds true for problem (4.8) at any point (x, z) that satisfies

z ∈ Z. Comparing this problem with (4.130) we have the following specifications. The optimization

variable y = [x; z], where x ∈ RN stacks all xi ∈ R from N nodes (here we assume xi ∈ R only for the

ease of presentation). Also, z ∈ RE stacks all ze ∈ R for e ∈ E . The equality constraint is written as

p(y) = [A,−I]y = 0, where A ∈ RE×N and I is an E×E identity matrix. Finally, for the inequality

constraint we have ge(y) = z2
e − ξe ≤ 0, and the active set is given by A(y) := {e | z2

e − ξe = 0}.

To show that MFCQ holds, consider a solution y∗ := (x∗, z∗) such that z∗ ∈ Z. First observe

that the Jacobian of equality constraint is ∇p(y∗) = [A,−I] which has full row rank. In order to

verify the second condition we need to find a vector dy := [dx; dz] ∈ RN+E such that

Adx = dz, (4.133a)

ze[dz]e < 0 for e ∈ A(y∗), (4.133b)

where [dz]e denotes the eth component of vector dz. To proceed, let us take (dx, dz) = −(x∗, z∗).

Clearly Adx = dz still holds true. Further, suppose the eth constraint is active, i.e., |z∗e | =
√
ξe,

then clearly
∣∣[dz]e∣∣ =

√
ξe. It follows that [dz]e × z∗e = −ξe < 0 for all e ∈ A(y∗). Therefore

condition (4.133b) is also satisfied.
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CHAPTER 5. ZEROTH ORDER NONCONVEX MULTI-AGENT

OPTIMIZATION

Abstract

In this paper we consider distributed optimization problems over a multi-agent network, where

each agent can only partially evaluate the objective function, and it is allowed to exchange messages

with its immediate neighbors. Differently from all existing works on distributed optimization, our

focus is given to optimizing a class of difficult non-convex problems, and under the challenging

setting where each agent can only access the zeroth-order information (i.e., the functional values)

of its local functions. For different types of network topologies such as undirected connected

networks or star networks, we develop efficient distributed algorithms and rigorously analyze their

convergence and rate of convergence (to the set of stationary solutions). Numerical results are

provided to demonstrate the efficiency of the proposed algorithms.

5.1 INTRODUCTION

Distributed optimization and control has found wide range of applications in emerging research

areas such as data-intensive optimization [65, 146], signal and information processing [47, 117],

multi-agent network resource allocation [134], communication networks [83], just to name a few.

Typically this type of problems is expressed as minimizing the sum of additively separable cost

functions, given below

min
x∈RM

g(x) :=
N∑
i=1

fi(x), (5.1)

where N denotes the number of agents in the network; fi : RM → R represents some (possibly

nonsmooth and nonconvex) cost function related to the agent i. It is usually assumed that each

agent i has complete information on fi, and they can only communicate with their neighbors.
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Therefore the key objectives of the individual agents are: 1) to achieve consensus with its neighbors

about the optimization variable; 2) to optimize the global objective function g(x).

Extensive research has been done on consensus based distributed optimization, but these works

are mostly restricted to the family of convex problems where fi(x)’s are all convex functions. In [100]

a first-order method based on the average consensus termed decentralized subgradient (DSG) has

been proposed. Following this work, many other first-order algorithms have been proposed to solve

distributed convex optimization problems under different assumptions on the underlying problem.

For example in [100] DSG is extended to the case where quantized information are used. In [129]

a local constraint set is added to each local optimization problem. A dual averaging subgradient

method is developed and analyzed in [34]. In [99] an algorithm termed subgradient-push has

been developed for a time-varying directed network. Other related algorithms can be found in

[88, 89, 123, 69, 10]. The first-order methods presented so far only converge to a neighborhood

of solution set unless using diminishing stepsizes, however using diminishing stepsizes often makes

the convergence slow. In order to overcome such a difficulty, recently the authors of [51] and

[122] have proposed two methods, named incremental aggregated gradient (IAG) and exact first-

order algorithm (EXTRA), both of which are capable of achieving fast convergence using constant

stepsizes. Another class of algorithms for solving problem (5.1) in the convex cases are designed

based on primal-dual methods, such as the Alternating Direction Method of Multipliers (ADMM)

[124, 138, 64, 68, 12], many of its variants [60, 25, 98], and distributed dual decomposition method

[1].

Despite the fact that distributed optimization in convex setting has a broad applicability, many

important applications are inherently nonconvex. For example, the resource allocation in ad-hoc

network [134], flow control in communication networks [130], and distributed matrix factorization

[59, 54], just to name a few. Unfortunately, without the key assumption of the convexity of fi’s,

the existing algorithms and analysis for convex problems are no longer applicable. Recently a

few works have started to consider algorithms for nonconvex distributed optimization problems.

For example, in [148] an algorithm based on dual subgradient method has been proposed, but it
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relaxes the exact consensus constraint. In [17] a distributed stochastic projection algorithm has

been proposed, and the algorithm converges to KKT solutions when certain diminishing stepsizes

are used. The authors of [63] proposed an ADMM based algorithm, and they provided one of the

first global convergence rate analysis for distributed nonconvex optimization. More recently, a new

convexification-decomposition based approach named NEXT has been proposed in [92, 130], which

utilizes the technique of gradient tracking to effectively propagate the information about the local

functions over the network. In [59, 55, 57, 61], a number of primal-dual based algorithms with

global convergence rate guarantee have been designed for different network structures.

A key drawback for all the above mentioned algorithms, convex or nonconvex, is that they

require at least first-order gradient information, and sometime even the second or higher order

information, in order to guarantee global convergence. Unfortunately, in many real-world problems,

obtaining such information can be very expensive, if not impossible. For example, in simulation-

based optimization [126], the objective function of the problem under consideration can only be

evaluated using repeated simulation. In certain scenarios of training deep neural network [76], the

relationship between the decision variables and the objective function is too complicated to derive

explicit form of the gradient. Further, in bandit optimization [2, 37], a player tries to minimize a

sequence of loss functions generated by an adversary, and such loss function can only be observed

at those points in which it is realized. In these scenarios, one has to utilize techniques from

derivative-free optimization, or optimization using zeroth-order information [127, 27]. Accurately

estimating a gradient often requires extensive simulation (see [41]). In certain application domains,

the complexity of each simulation may require significant computational time (e.g. hours). Even

when such simulations are parallelized approaches based upon a centralized gradient estimation are

impractical due to the need to synchronize. In contrast, a zeroth-order distributed approach has

limited simulation requirements for each node and does not require synchronization.

Recently, Nesterov [105] has proposed a general framework of zeroth-order gradient based al-

gorithms, for both convex and nonconvex problems. It has been shown that for convex (resp.

nonconvex) smooth problems the proposed algorithms require O(M
ε2

) iterations (M denotes the
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Figure 5.1: Left: Mesh Network (MNet); Right: Star Network (SNet)

dimension of the problem) to achieve an ε-optimal (resp. ε-stationary i.e. ‖∇f(x)‖2 ≤ ε) solution.

Further, for both convex and nonconvex problems, the convergence rate for zeroth-order gradient

based-algorithms is at most O(M) times worse than that of the first-order gradient-based algo-

rithms. Ghadimi and Lan [45] developed a stochastic zeroth-order gradient method which works

for convex and nonconvex optimization problems. Duchi et al. [33] proposed a stochastic zeroth-

order Mirror Descent based algorithm for solving stochastic convex optimization problems. In [43]

a zeroth-order ADMM algorithm has been proposed for solving convex optimization problems.

The complexity of O( 1√
T

) has been proved for the proposed algorithm, where T denotes the total

number of iterations. Recently an asynchronous stochastic zeroth-order gradient descent (ASZD)

algorithm is proposed in [81] for solving stochastic nonconvex optimization problem. Following this

work, a variance reduced version of ASZD denoted by AsyDSZOVR is proposed in [67] for solving

the same problem to improve the convergence rate from O( 1√
T

) in ASZD to O( 1
T ) in AsyDSZOVR.

However, the zeroth-order based methods reviewed above are all centralized algorithms, hence they

cannot be implemented in a distributed setting.

In this work we are interested in developing algorithms for the challenging problem of nonconvex

distributed optimization, under the setting where each agent i can only access the zeroth-order

information of its local functions fi. For two different types of network topologies, namely, the

undirected mesh network (MNet) (cf. Fig. 5.1) and the star networks (SNet) (cf. Fig. 5.1),

we develop efficient distributed algorithms and rigorously analyze their convergence and rate of

convergence (to the set of stationary solutions).
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In particular, the MNet refers to a network whose nodes are connected to a subset of nodes

through an undirected link, and such a network is very popular in applications such as distributed

machine learning [40, 96], and distributed signal processing [46, 117]. On the other hand, the SNet

has a central controller, which is connected to all the rest of the nodes. Such a network is popular

in parallel computing; see for example [145, 80, 55]. The main contributions of our work is given

below.

• For MNet, we design an algorithm capable of dealing with nonconvexity and zeroth-order

information in the distributed setting. The proposed algorithm is based upon a primal-dual

based zeroth-order scheme, which is shown to converge to the set of stationary solutions of

problem (5.1) (with nonconvex but smooth fi’s), in a globally sublinear manner.

• For SNet we propose a stochastic primal-dual based method, which is able to further utilize

the special structure of the network (i.e., the presence of the central controller) and deal with

problem (5.1) with nonsmooth objective. Theoretically, we show that the proposed algorithm

also converges to the set of stationary solutions in a globally sublinearly manner.

To the best of our knowledge, these algorithms are the first ones for distributed nonconvex opti-

mization that are capable of utilizing zeroth-order information, while possessing global convergence

rate guarantees.

Notation. We use ‖ · ‖ to denote the Euclidean norm, and use ‖ · ‖F to denote the Frobenius

norm. If A is a matrix, A> represent its transpose. For a given vector a and matrix H, we define

‖a‖2H := aTHa. The notation 〈a, b〉 is used to denote the inner product of two vectors a, b. To

denote an M ×M identity matrix we use IM . E[·] denotes taking expectation with respect to all

random variables, and Ev[·] denote taking expectation with respect to the random variable v.

Preliminaries. We present some basic concepts and key properties related to derivative-free

optimization [105]. Suppose µ > 0 is the so-called smoothing parameter, then for a standard

Gaussian random vector φ ∈ RQ the smoothed version of function f is defined as follows

fµ(z) = Eφ[f(z + µφ)] =
1

(2π)
Q
2

∫
f(z + µφ)e−

1
2
‖φ‖2 dφ.
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Let us assume that f : RQ → R is L̂-smooth (denoted as f ∈ C1
L̂

), i.e. there exists a constant L̂ > 0

such that

‖∇f(z1)−∇f(z2)‖ ≤ L̂‖z1 − z2‖, ∀ z1, z2 ∈ dom(f). (5.2)

Then it can be shown that the function fµ ∈ C1
Lµ

for some Lµ ≤ L̂, and its gradient is given by

∇fµ(z) =
1

(2π)
Q
2

∫
f(z + µφ)− f(z)

µ
φe−

1
2
‖φ‖2 dφ. (5.3)

Further, for any z ∈ RQ, it is proved in [105, Theorem 1, Lemma 3] that

|fµ(z)− f(z)| ≤ µ2

2
L̂Q, (5.4)

‖∇fµ(z)−∇f(z)‖ ≤ µ

2
L̂(Q+ 3)

3
2 , ∀z ∈ dom (f). (5.5)

A stochastic zeroth-order oracle (SZO) takes z ∈ dom (f) and returns a noisy functional value of

f(z), denoted by H(z; ξ), where ξ ∈ R is a random variable characterizing the stochasticity of H.

We make the following assumption regarding H(z; ξ) and ∇f(z).

Assumption A. We assume the following

A1. Dom(f) is an open set, and there exists K ≥ 0 such that ∀ z ∈ dom (f), we have: ‖∇f(z)‖ ≤

K;

A2. For all z ∈ dom (f), Eξ[H(z, ξ)] = f(z);

A3. For some σ ≥ 0, E[‖∇H(z, ξ) − ∇f(z)‖2] ≤ σ2, where ∇H(z, ξ) denotes any stochastic

estimator for ∇f(z).

These assumptions are standard in zeroth-order optimization. See for example [43, Def 1.3 and

Lemma 4.2], [105, Eq. 4], and [45, A3]. Utilizing the SZO to obtain the functional values, one can

show that the following quantity is an unbiased estimator for ∇fµ(z)

Gµ(z, φ, ξ) =
H(z + µφ, ξ)−H(z, ξ)

µ
φ, (5.6)
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where the constant µ > 0 is smoothing parameter; φ ∈ RQ is a standard Gaussian random vector.

In particular, we have

Eξ,φ[Gµ(z, φ, ξ)] = Eφ
[
Eξ[Gµ(z, φ, ξ) | φ]

]
= ∇fµ(z). (5.7)

Furthermore, for given J independent samples of {(φj , ξj)}Jj=1, we define Ḡµ(z, ξ, φ) as the sample

average:

Ḡµ(z, ξ, φ) :=
1

J

J∑
j=1

Gµ(z, φj , ξj), (5.8)

where φ := {φj}Jj=1, ξ := {ξj}Jj=1. It is easy to see that for any J ≥ 1, Ḡµ(z, ξ, φ) is an unbiased

estimator of ∇fµ(z). Utilizing the above notations and definitions we have the following lemma

regarding the Ḡµ(z, ξ, φ).

Lemma 22 [43, Lemma 4.2] Suppose that Assumption A holds true. Then we have the following

Eξ,φ[‖Ḡµ(z, ξ, φ)−∇fµ(z)‖2] ≤ σ̃2

J
, (5.9)

where σ̃ := 2Q[K2 + σ2 + µ2L̂2Q].

5.2 Zeroth-Order Algorithm over MNet

5.2.1 System Model

Consider a network of agents represented by a graph G := {V, E}, with |V| = N (N nodes)

and |E| = E (E edges). Each node v ∈ V represents an agent in the network, and each edge

eij = (i, j) ∈ E indicates that node i and j are neighbors. Let Ni := {j | (i, j) ∈ E} denotes

the set of neighbors of agent i, and assume that |Ni| = di. We assumed that each node can only

communicate with its di single-hop neighbors in Ni.

We consider the following reformulation of problem (5.1)

min
zi∈RM

N∑
i=1

fi(zi), s.t. zi = zj , ∀ eij ∈ E , (5.10)
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where for each agent i = 1, · · ·N we introduce a local variable zi ∈ RM . If the graph G is a

connected graph, then problem (5.10) is equivalent to problem (5.1). For simplicity of presentation

let us set Q := NM , and define a new variable z := {zi}Ni=1 ∈ RQ×1. Throughout this section, we

will assume that each function fi : RM → R is a nonconvex and smooth function. Below we present

a few network related quantities to be used shortly.

• The incidence matrix: For a given graph G, the incidence matrix Ã ∈ RE×N is a matrix

where for each edge k = (i, j) ∈ E and when j > i, we set Ã(k, i) = 1 and Ã(k, j) = −1. The

rest of the entries of Ã are all zero. For example, for the network in Fig. 5.1 the edge set is

E = {e12, e14, e34}, therefore the incidence matrix is given by

Ã =


1 −1 0 0

1 0 0 −1

0 0 1 −1

 .

Define the extended incidence matrix as

A := Ã⊗ IM ∈ REM×Q. (5.11)

• The degree matrix: For a given graph G, the degree matrix D̃ ∈ RN×N is a diagonal matrix

with D̃(i, i) = di where di is the degree of node i; let D := D̃ ⊗ IM ∈ RQ×Q.

• The signed/signless Laplacian matrix: For a given graph G with its extended incidence matrix

given by (5.11), its signed and signless Laplacian matrices are expressed as

L− := A>A ∈ RQ×Q. (5.12a)

L+ := 2D −A>A ∈ RQ×Q. (5.12b)

Using the above notations, one can easily check that problem (5.10) can be written compactly as

below

min
z∈RQ

g(z) =
N∑
i=1

fi(zi), s.t. Az = 0, (5.13)
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where we have defined z := {zi}Ni=1 ∈ RQ×1. The Lagrangian function for this problem is defined

by

L(z, λ) := g(z) + 〈λ,Az〉, (5.14)

where λ ∈ REM×1 is the dual variable associated with the constraint Az = 0. The stationary

solution set for the problem (5.13) is given by

S = {(z∗, λ∗) | ∇zL(z∗, λ∗) = 0 and Az∗ = 0}, (5.15)

where ∇zL(z∗, λ∗) denotes the gradient of Lagrangian function with respect to the variable z

evaluated at (z∗, λ∗).

5.2.2 The Proposed Algorithm

In this subsection we present a Zeroth-Order NonconvEx, over MNet (ZONE-M) algorithm

which is capable of solving distributed nonconvex optimization problem in an efficient manner [to

the set of stationary solutions as defined in (5.15)]. To proceed, let us first construct the augmented

Lagrangian (AL) function for problem (5.13)

Lρ(z, λ) := g(z) + 〈λ,Az〉+
ρ

2

∥∥Az∥∥2
, (5.16)

where λ ∈ REM×1 is the dual variable associated with the constraint Az = 0, and ρ > 0 denotes

the penalty parameter. To update the primal variable z, the AL is first approximated using a

quadratic function with a degree-matrix weighted proximal term ‖z − zr‖2D, followed by one step

of zeroth-order gradient update to optimize such a quadratic approximation. After the primal

update, an approximated dual ascent step is performed to update λ. The algorithm steps are

detailed in Algorithm 7. Note that the ZONE-M is a variant of the popular method called Method

of Multipliers (MM), whose steps are expressed below [58]

zr+1 = argmin
z∈RQ

Lρ(z, λ
r), (5.17)

λr+1 = λr + ρAzr+1. (5.18)
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Algorithm 7 The ZONE-M Algorithm

1: Input: z0 ∈ RQ, λ0 ∈ REM , D ∈ RQ×Q, A ∈ REM×Q, T ≥ 1, J ≥ 1, µ > 0

2: for r = 0 to T − 1 do

For each i = 1, · · · , N , generate φri,j ∈ RM , j = 1, 2, · · · , J from an i.i.d standard Gaussian

distribution and calculate Ḡµ,i(z
r
i , φ

r
i , ξ

r
i ) ∈ RM by

Ḡµ,i(z
r
i , φ

r
i , ξ

r
i ) =

1

J

J∑
j=1

Hi(zri + µφri,j , ξ
r
i,j)−Hi(zri , ξri,j)
µ

φri,j , (5.19)

where we have defined φri := {φri,j}Jj=1, ξri := {ξri,j}Jj=1; Set

GJµ,r := {Ḡµ,i(zri , φri , ξri )}Ni=1 ∈ RQ

Update z and λ by

zr+1 = argmin
z

〈GJµ(zr, φr, ξr) +A>λr + ρA>Azr, z − zr〉+ ρ‖z − zr‖2D, (5.20)

λr+1 = λr + ρAzr+1. (5.21)

3: end for

4: Output: Choose (zu, λu) uniformly and randomly from {(zr+1, λr+1)}T−1
r=0 .

However, for the problem that is of interest in this paper, the MM method is not applicable because

of the following reasons: 1) The optimization problem (5.17) is not easily solvable to global optima

because it is nonconvex, and we only have access to zeroth-order information; 2) It is not clear

how to implement the algorithm in a distributed manner over the MNet. In contrast, the primal

step of the ZONE-M algorithm (5.20) utilizes zeroth-order information and can be performed in

closed-form. Further, as we elaborate below, combining the primal and the dual steps of ZONE-M

yields a fully distributed algorithm.

To illustrate the distributed implementation of the proposed method, let us transform the

ZONE-M algorithm to a primal only form. To this end, let us write down the optimality condition

for (5.20) as

GJ,rµ +A>λr + ρA>Azr + 2ρD(zr+1 − zr) = 0. (5.22)
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Utilizing the definitions in (5.12a), and (5.12b), we have the following identity from (5.22)

GJ,rµ +A>λr + 2ρDzr+1 − ρL+zr = 0. (5.23)

Let us replace r in equation (5.23) with r − 1 to get

GJ,r−1
µ +A>λr−1 + 2ρDzr − ρL+zr−1 = 0. (5.24)

Now rearranging the terms in (5.21) and using the definition in (5.12a) we have

A>(λr − λr−1) = ρA>Azr = ρL−zr. (5.25)

Subtracting equation (5.24) from (5.23) and utilizing (5.25) yield

GJ,rµ −GJ,r−1
µ + ρL−zr + 2ρD(zr+1 − zr)− ρL+(zr − zr−1) = 0.

Rearranging terms in the above identity, we obtain

zr+1 = zr − 1

2ρ
D−1

[
GJ,rµ −GJ,r−1

µ

]
+

1

2
D−1(L+ − L−)zr − 1

2
D−1L+zr−1. (5.26)

To implement such iteration, it is easy to check (by utilizing the definition of L+ and L−) that each

agent i performs the following local computation

zr+1
i = zri −

1

2ρdi

[
Ḡµ,i(z

r
i , φ

r
i , ξ

r
i )− Ḡµ,i(zr−1

i , φr−1
i , ξr−1

i )

]
+
∑
j∈Ni

1

di
zrj −

1

2

( ∑
j∈Ni

1

di
zr−1
j + zr−1

i

)
,

(5.27)

where Ḡµ,i(z
r
i , φ

r
i , ξ

r
i ) is defined in (5.19). Clearly, this is a fully decentralized algorithm, because

to carry out such an iteration, each agent i only requires the knowledge about its local function

[i.e., Ḡµ,i(z
r
i , φ

r
i , ξ

r
i ), Ḡµ,i(z

r−1
i , φr−1, ξr−1), zri and zr−1

i ], as well as information from the agents in

its neighborhood Ni.

Remark 3 The single variable iteration derived in (5.26) takes a similar form as the EXTRA

algorithm proposed in [? ], which uses the first-order gradient information. In EXTRA, the iteration

is given by (for r ≥ 2)

zr+1 − zr = Wzr −
IQ +W

2
zr−1 − α

[
∇g(zr)−∇g(zr−1)

]
.
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where W is a double stochastic matrix.

In ZONE-M algorithm let us define W := 1
2D
−1(L+ − L−), which is a row stochastic matrix.

Then iteration (5.26) becomes

zr+1 − zr = Wzr −
IQ +W

2
zr−1 − 1

2ρ
D−1

[
GJ,rµ −GJ,r−1

µ

]
,

which is similar to EXTRA algorithm. The key difference is that our algorithm is capable of utilizing

zeroth-order information, to deal with nonconvex problems, while the EXTRA algorithm requires

first-order (gradient) information, and it only deals with convex problems.

5.2.3 The Convergence Analysis of ZONE-M

In this subsection we provide the convergence analysis for ZONE-M algorithm. Besides As-

sumption A, we will further make the following assumptions.

Assumption B.

B1. Function g(z) is L̂-smooth, which satisfies (5.2).

B2. There exists a constant δ > 0 such that

∃ g > −∞, s.t. g(z) +
δ

2
‖Az‖2 ≥ g, ∀ z ∈ RQ. (5.28)

The above assumptions on the objective g is rather mild. The first one is standard for analyzing

many first-order algorithms for nonconvex centralized optimization (see, e.g., [9]), while the second

assumption only postulates that the objective function is bounded from below. Without loss of

generality we can set g = 0. A few examples of nonconvex functions that satisfy the Assumption

A1, and B are provided below:

• The sigmoid function sig(z) = 1
1+e−z

• The function tanh(z) = 1−e−2z

1+e−2z

• The function 2logit(z) = 2ez

ez+1 = 1 + tanh( z2)
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Note that these nonconvex functions are popular activation functions used in learning neural net-

works.

Before formally presenting the analysis, let us further define some additional notation to sim-

plify the presentation. Let Fr+1 := {(ξt, φt)}rt=1 be the σ-field generated by the entire history of

algorithm up to iteration r. Let σmin be the smallest nonzero eigenvalue of matrix A>A. Addi-

tionally, we define wr := (zr+1 − zr)− (zr − zr−1). Further to facilitate the proofs let us list a few

relationships below.

• For any given vectors a and b we have

〈b− a, b〉 =
1

2
(‖b‖2 + ‖a− b‖2 − ‖a‖2), (5.29)

〈a, b〉 ≤ 1

2ε
‖a‖2 +

ε

2
‖b‖2; ∀ ε > 0. (5.30)

• For n given vectors ai we have the following∥∥∥∥ n∑
i=1

ai

∥∥∥∥2

≤ n
n∑
i=1

∥∥ai∥∥2
. (5.31)

Our convergence analysis consists of the following main steps: First we show that the successive

difference of the dual variable, which represents the constraint violation, is bounded by a quantity

related to the primal variable. Second we construct a special potential function whose behavior is

tractable under a specific parameter selection. Third, we combine the previous results to obtain

the main convergence rate analysis. Below we provide a sequence of lemmas and the main theorem.

The proofs are provided in Appendix A. Unless otherwise stated, throughout this section the

expectations are taken with respect to filtration Fr+1 defined above.

Our first lemma bounds the change of the dual variables (in expectation) by that of the primal

variables. This lemma will be used later to control the progress of the dual step of the algorithm.

Lemma 23 Suppose Assumptions A, B hold true, and L+ is the signless Laplacian matrix defined

in (5.12b). Then for r ≥ 1 we have the following inequity

E‖λr+1 − λr‖2 ≤ 9σ̃2

Jσmin
+

6L2
µ

σmin
E‖zr − zr−1‖2 +

3ρ2‖L+‖
σmin

E‖wr‖2L+ . (5.32)
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To proceed, we need to construct a potential function so that the behavior of the algorithm

can be made tractable. For notational simplicity let us define Lr+1
ρ := Lρ(z

r+1, λr+1). Also let

c > 0 to be some positive constant (to be specified shortly), and set k := 2

(
6L̂2

ρσmin
+ 3cL̂

2

)
. Let

B := L+ + k
cρIQ, and define V r+1 as

V r+1 :=
ρ

2

(
‖Azr+1‖2 + ‖zr+1 − zr‖2B

)
.

Using these notations, we define a potential function in the following form

P r+1 := Lr+1
ρ + cV r+1. (5.33)

The following lemma analyzes the behavior of the potential function as the ZONE-M algorithm

proceeds.

Lemma 24 Suppose Assumptions A, B are satisfied, and parameters c and ρ satisfy the following

conditions

c >
6‖L+‖
σmin

, ρ > max
(−b+

√
b2 − 8d

4
, δ, L̂/2

)
, (5.34)

where

b = −L̂
(
L̂+

24‖L+‖
σmin

+ 1
)
− 3, d = −12L̂2

σmin
.

Then for some constants c1, c2, c3 > 0, the following inequality holds true for r ≥ 1

E
[
P r+1 − P r

]
≤ k − c1

2
E‖zr+1 − zr‖2 − c2E‖wr‖2L+ + c3

σ̃2

J
+

3µ2(Q+ 3)3

8
, (5.35)

where we have defined

c1 := 2ρ− L̂2 − (c+ 1)L̂− 3 > 0, (5.36)

c2 :=

(
cρ

2
− 3ρ‖L+‖

σmin

)
> 0, c3 :=

9

ρσmin
+

3 + 6cL̂

2L̂2
> 0.

The key insight obtained from this step is that, a conic combination of augmented Lagrangian

function, as well as the constraint violation can serve as the potential function that guides the
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progress of the algorithm. We expect that such construction is of independent interest. It will be

instrumental in analyzing other (probably more general) nonconvex primal-dual type algorithms.

The next lemma shows that P r+1 is lower bounded.

Lemma 25 Suppose that Assumptions A, B are satisfied, and constant c is picked large enough

such that

c ≥ −b1 +
√
b21 − 4a1d1

2a1
, (5.37)

where

a1 =
3ρL̂

8
, b1 =

3L̂2

σmin
, d1 = −2‖L+‖2

σmin
. (5.38)

Then the statement below holds true

∃ P s.t. E[P r+1] ≥ P > −∞, ∀ r ≥ 1. (5.39)

where P is a constant that is independent of total number of iterations T .

To present our main convergence theorem, we need to have a way to measure the gap between

the current iterate to the set of stationary solutions. To this end, consider the following gap

function

Φ(zr, λr−1) := E
[
‖∇zLρ(zr, λr−1)‖2 + ‖Azr‖2

]
. (5.40)

It can be easily checked that ‖∇zLρ(z∗, λ∗)‖2 + ‖Az∗‖2 = 0 if and only if (z∗, λ∗) is a stationary

solution of the problem (5.13). For notational simplicity let us write Φr := Φ(zr, λr−1). The result

below quantifies the convergence rate of ZONE-M.

Theorem 9 Consider the ZONE-M algorithm with fixed total number of iterations T , and u is a

number uniformly randomly sampled from the index set {1, 2, · · · , T}. Suppose Assumptions A, B

are satisfied, penalty parameter ρ satisfies in the condition given in Lemma 24, a1, b1, d1 are those

constants in (5.38), and constant c satisfies in

c ≥ max

(
−b1 +

√
b21 − 4a1d1

2a1
,
6‖L+‖
σmin

)
. (5.41)
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Then there exists constants γ1, γ2, γ3 > 0 such that we have the following bound

Eu[Φu] ≤ γ1

T
+
γ2σ̃

2

J
+ γ3µ

2. (5.42)

The explicit value for constants γ1, γ2, and γ3 can be expressed as the following: Let

α1 = 8L̂+ 2ρ2‖L+‖2, α2 =
6L̂

ρ2σmin
, α3 =

3‖L+‖
σmin

,

and c1, c2 and c3 are constants given in equation (5.36). Let us set ζ = max(α1+α2,α3)

min(
c1−k

2
,c2)

. Then we

have the following expression

γ1 = ζE[P 1 − P ] + α2E‖z1 − z0‖2

γ2 = ζc3 +
9 + 4ρ2σmin

ρ2σmin
, γ3 =

3

8
ζ + 2L̂2.

Remark 4 From the main result in Theorem 9 we can observe that the complexity bound of the

ZONE-M depends on σ̃, and the smoothing parameter µ . Therefore, no matter how many iterations

we run the algorithm, it always converges to a neighborhood of a KKT point, which is expected

when only zeroth-order information is available; see [43, Theorem 4.4], and [45, Theorem 3.2].

Nevertheless, if we choose J ∈ O(T ), and µ ∈ O( 1√
T

), we can achieve the following bound

Eu[Φu] ≤ γ1

T
+
γ2σ̃

2

T
+
γ3

T
. (5.43)

This indicates that ZONE-M converges in a sublinear rate.

Remark 5 Our bound on ρ derived in (5.34) can be loose because it is obtained based on the

the worst case analysis. In practice one may start with a small ρ and gradually increase it until

reaching the theoretical bound. In the numerical experiments, we will see that such strategy often

leads to faster empirical convergence.

5.3 Zeroth-Order Algorithm over SNet

In this section we focus on multi-agent optimization problem over SNet (cf. Fig. 5.1). We pro-

pose the Zeroth-Order NonconvEx, over SNet (ZONE-S) algorithm for the multi-agent optimization

problem.
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5.3.1 System Model

Let us consider the following problem

min
x∈X

g(x) :=
N∑
i=1

fi(x) + r(x), (5.44)

where X ⊆ RM is a closed and convex set, fi : RM → R is smooth possibly nonconvex function,

and r : RM → R is a convex possibly nonsmooth function, which is usually used to impose some

regularity to the solution. Let us set f(x) :=
∑N

i=1 fi(x) for notational simplicity. Note that this

problem is slightly more general than the one solved in the previous section [i.e., problem (5.1) with

smooth objective function], because here we have included constraint set X and the nonsmooth

function r(x) as well.

We note that many first-order algorithms have been developed for solving problem (5.44),

including SGD [112], SAG [31], SAGA [118], SVRG [71], and NESTT [57], but it is not clear how

to adapt these methods and their analysis to the case with non-convex objective and zeroth-order

information.

Similar to the problem over MNet, here we split the variable x ∈ RM into local copies zi ∈ RM ,

and reformulate problem (5.44) as

min
x,z

N∑
i=1

fi(zi) + h(x) s.t. x = zi, ∀ i = 1, · · · , N, (5.45)

where h(x) := r(x) + ιX(x), [ιX(x) = 0 if x ∈ X, otherwise ιX(x) = ∞ ]. In this formulation we

have assumed that for i = 1, 2, · · ·N , fi is the local function for agent i, and h(x) is handled by

the central controller. Further, agent i has access to the functional values of fi through the SZO

as described in preliminaries.

5.3.2 Proposed Algorithm

The proposed algorithm is again a primal-dual based scheme. The augmented Lagrangian

function for problem (5.45) is given by

Lρ

(
z, x;λ

)
=

N∑
i=1

(
fi(zi) + 〈λi, zi − x〉+

ρi
2
‖zi − x‖2

)
+ h(x)



www.manaraa.com

155

where λi, and ρi are respectively the dual variable and the penalty parameter associated with

the constraint zi = x. Let λ := {λi}Ni=1, ρ := {ρi}Ni=1 ∈ RN++. To proceed, let us introduce the

following function for agent i

Uµ,i(zi, x;λi) = fi(x) + 〈Ḡµ,i(x, φ, ξ), zi − x〉+ 〈λi, zi − x〉+
αiρi

2
‖zi − x‖2. (5.46)

In the above expression αi is a positive constant, and Ḡµ,i(x, φ, ξ) is given by

Ḡµ,i(x, φ, ξ) =
1

J

J∑
j=1

Hi(x+ µφj , ξj)−Hi(x, ξj)
µ

φj , (5.47)

where Hi(x, ξ) is a noisy version of fi(x) obtained from SZO, µ > 0 is smoothing parameter,

φj ∈ RM is a standard Gaussian random vector, ξj represents the noise related to the SZO output,

and we set φ = {φj}Jj=1, and ξ = {ξj}Jj=1. To see more details about the characteristics of function

Uµ,i(zi, x;λi) the readers are refereed to [? ].

The proposed algorithm is described below. At the beginning of iteration r + 1 the central

controller broadcasts xr to everyone. An agent indexed by ir ∈ {1, 2, · · ·N} is then randomly

picked with some probability of pir , and this agent optimizes Uµ,ir(zi, x
r, λr) [defined in (5.46)], and

updates its dual variable λir . The rest of the nodes j 6= ir simply set zr+1
j = xr, and λr+1

j = λrj .

Finally the central controller updates the variable x by minimizing the augmented Lagrangian. The

pseudo-code of the ZONE-S algorithm is presented in Algorithm 8.

5.3.3 Convergence Analysis of ZONE-S

In this part we analyze the behavior of ZONE-S algorithm. The proofs of the lemmas are

provided in the appendix. We first make the following assumptions on the problem (5.44) besides

Assumption A.

Assumption C

C1. For i = 1, 2, · · · , N , function fi and f are Li-smooth, and L-smooth respectively.

C2. The function g(x) is bounded from below over X ∩ int(dom (g)).

C3. The function r(x) is convex but possibly nonsmooth.
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Algorithm 8 ZONE-S Algorithm

1: Input: x0 ∈ RM , λ0 ∈ RM , T ≥ 1, J ≥ 1, µ > 0

2: for r = 1 to T , do

In central controller: Pick ir from {1, 2, · · · , N} with probability pir =

√
Lµ,ir∑N

i=1

√
Lµ,i

. Generate

φrj ∈ RM , j = 1, 2, · · · , J from an i.i.d standard Gaussian distribution

In agent ir: Calculate Ḡµ,ir(x
r, φr, ξr) using

Ḡµ,ir(x
r, φr, ξr) =

1

J

J∑
j=1

Hir(xr + µφrj , ξ
r
j )−Hir(xr, ξrj )
µ

φrj , (5.48)

where we set φr = {φrj}Jj=1, and ξr = {ξrj}Jj=1.

In all agents: Update z, and λ by

zr+1
ir

= xr − 1

αirρir

[
λrir + Ḡµ,ir(x

r, φr, ξr)

]
; (5.49)

λr+1
ir

= λrir + αirρir

(
zr+1
ir
− xr

)
; (5.50)

λr+1
j = λrj , zr+1

j = xr, ∀ j 6= ir. (5.51)

In central controller: Update x by

xr+1 = arg min
x∈X

Lρ(z
r+1, x;λr). (5.52)

3: end for

4: Output: xu chosen randomly from {xr}Tr=1.

Let us define the auxiliary sequence yr := {yri }Ni=1 as follows

y0 = x0, yrj = yr−1
j , if j 6= ir, else yrir = xr, ∀ r ≥ 1. (5.53)

Next let us define the potential function which measures the progress of algorithm

Q̃r =
N∑
i=1

fµ,i(x
r) +

N∑
i=1

4

αiρi
‖∇fµ,i(yr−1

i )−∇fµ,i(xr)‖2 + h(xr),

where fµ,i(x
r) denotes the smoothed version of function fi(x

r) defined in (5.3).

First, we study the behavior of the potential function. For this algorithm let us define the

filtration Fr+1 as the σ-field generated by {it, φt, ξt}rt=1. Throughout this section the expectations

are taken with respect to Fr+1 unless otherwise noted.
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Lemma 26 Suppose Assumption C holds true, set p̃ :=
∑N

i=1
1
pi

, β := 1∑N
i=1 ρi

, and for i =

1, 2, · · · , N , we pick

αi = pi =
ρi∑N
i=1 ρi

, and ρi ≥
5.5Lµ,i
pi

, i = 1, · · ·N. (5.54)

Then we have the following result for ZONE-S algorithm

E[Q̃r+1 − Q̃r] ≤ −1

100β
E‖xr+1 − xr‖2 −

N∑
i=1

1

2ρi
E‖∇fµ,i(xr)−∇fµ,i(yr−1

i ))‖2 +
3p̃βσ̃2

J
. (5.55)

Next we define the optimality gap as the following

Ψr :=
1

β2
E
∥∥∥∥xr − prox

1/β
h [xr − β∇f(xr)]

∥∥∥∥2

, (5.56)

where proxγh[u] := argmin h(u) + γ
2‖x − u‖

2 is the proximity operator for function h. Note that

when the nonsmooth term h ≡ 0, Ψr reduces to the size of the gradient vector E‖∇f(xr)‖2.

Finally we present the main convergence result about the proposed ZONE-S algorithm.

Theorem 10 Suppose Assumptions A (for each function fi), and Assumption C hold, and u is

uniformly randomly sampled from {1, 2, · · · , T}. Let us set 1
β = 4(

∑N
i=1

√
Lµ,i)

2. Then we have

the following bounds for the optimality gap in expectation

1) Eu[Ψu] ≤ 2200
( N∑
i=1

√
Lµ,i

)2E[Q̃1 − Q̃T+1]

T
+
µ2L2(M + 3)3

2
+

1024p̃σ̃

J
;

2) Eu[Ψu] + Eu
[ N∑
i=1

3ρ2
i

∥∥∥∥zui − xu−1

∥∥∥∥2]

≤ 2200

( N∑
i=1

√
Lµ,i

)2E[Q̃1 − Q̃T+1]

T
+
µ2L2(M + 3)3

2
+

1024p̃σ̃

J
.

Note that part (1) only measures the primal optimality gap, while part (2) also shows that the

expected constraint violation shrinks in the same order.

Remark 6 Similar to the ZONE-M, the bound for the optimality gap of ZONE-S is dependent on

two T -independent constants, the first one µ2L2(M+3)3

2 arises from using zeroth-order gradient, and
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the second term 1024p̃σ̃2

J arise from the uncertainty in the gradient estimation. Again, if we pick

µ ∈ O( 1√
T

), and J ∈ O(T ), we obtain the following sublinear convergence rate

Eu[Ψu] ≤ 2200
( N∑
i=1

√
Lµ,i

)2E[Q̃1 − Q̃T+1]

T
+

1024p̃σ̃2

T
+
L2(M + 3)3

T
. (5.57)

Remark 7 The reason that ZONE-S is able to incorporate non-smooth terms, in contrast to the

ZONE-M algorithm, is that it has special network structure. In particular, the non-smooth term is

optimized by the central controller, and the fact that the central controller can talk to every node

makes sure that the non-smooth term is optimized by using the most up-to-date information from

the network.

5.4 Numerical Results

In this section we numerically evaluate the effectiveness of the ZONE-M and ZONE-S algo-

rithms. We consider some distributed nonconvex optimization problems in zeroth-order setup

(i.e., we only have access to the noisy functional values). However, in order to simply check

whether the considered problems are fit into our model here we express the explicit form of the

objective functions for the considered problems. We set the noise ξ to be a zero-mean Gaussian

random variable with standard deviation σ = 0.01. All the simulations are performed on Matlab

2015a on a Laptop with 4 GB memory and Intel Core i7-4510U CPU (2.00 GHz), running on Linux

(Ubuntu 16.04) operating system.

5.4.1 ZONE-M Algorithm

We study the following two nonconvex distributed optimization problems.

Distributed Nonconvex Consensus. Consider minimizing sum of nonconvex functions in a

distributed setting

min
z∈RQ

N∑
i=1

fi(zi), s.t. Az = 0. (5.58)

where each agent i can only obtain the zeroth-order information of its local function, given by

fi(zi) =
ai

1 + e−zi
+ bilog(1 + z2

i ),
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where ai and bi are constants generated from an i.i.d Gaussian distribution. Clearly the function

fi is nonconvex and smooth, and we can simply check that it satisfies assumption A, B. In our

experiments the graphs are generated based on the scheme proposed in [141]. In this scheme a

random graph with N nodes and radius R is generated with nodes uniformly distributed over a unit

square, and two nodes connect if their distance is less than R. We set problem dimension M = 1,

and the number of nodes in the network N = 20 with radius R = 0.6. The penalty parameter ρ is

selected to satisfy theoretical bounds given in Lemma 24, the smoothing parameter is set µ = 1√
T

,

and we set J = T , where maximum number of iterations is picked T = 1000. We compare the

ZONE-M algorithm with Randomized Gradient Free (RGF) algorithm with diminishing stepsize 1√
r

(r denotes the iterations counter) proposed in [142], which is only developed for convex problems.

We also compare our algorithm with a variant of ZONE-M which uses increasing penalty parameter

ρ =
√
r. When choosing ρ =

√
r neither RFG not ZONE-M has convergence guarantee. We use

the optimality gap (opt-gap) and constraint violation (cons-vio), displayed below, to measure the

quality of the solution generated by different algorithms

opt-gap :=

∥∥∥∥ N∑
i=1

∇fi(zi)
∥∥∥∥2

+
∥∥Az∥∥2

,

cons-vio := ‖Az‖2. (5.59)

Figure 5.5 illustrates the comparison among different algorithms. Each point in the figure is

obtained by averaging over 50 independent trials. One can observe that: 1) ZONE-M converges

faster compared with RGF in both the optimality gap and the consensus error; 2) ZONE-M with

increasing penalty (ρ =
√
r) appears to be faster than its constant stepsize counterpart.

In the next set of experiments we compare different algorithms with a number of choices of

network size, i.e., N ∈ {10, 20, 40, 80}. For this problem we set the radius R = 0.5 The results

(average over 50 independent trials) are reported in Table 5.1. In this table ZONE-M (C) and

ZONE-M (I) denote ZONE-M with constant and increasing stepsize, respectively. We observe that

ZONE-M algorithm is always faster compared with the RGF.
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Figure 5.3 The optimality gap versus itera-
tion counter
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Figure 5.4 The constraint violation versus
iteration counter

Figure 5.5: Comparison of different algorithms for the nonconvex consensus problem given in (5.58).

5.4.2 ZONE-S Algorithm

In this subsection we explore the effectiveness of ZONE-S algorithm. The penalty parameter ρ

is selected to satisfy the conditions given in Lemma 26, or to be an increasing sequence satisfying

ρ =
√
r. For comparison purpose we consider two additional algorithms, namely the zeroth-order

gradient descent (ZO-GD) [105] ( which is a centralized algorithm), and the zeroth-order stochastic

gradient descent (ZO-SGD) [45]. To be notationally consistent with our algorithm we denote the

stepsize for these two algorithms with 1/ρ. For ZO-GD it has been shown that if the stepsize is set

1/ρ = 1
4L(M+4) , and the smoothing factor satisfies µ ≤ O( ε

ML), then the algorithm will converge

to an ε-stationary solution [105, Section 7]. Also, for ZO-SGD the optimality gap decreases in

the order of 1√
T

when we pick stepsize 1/ρ < 1
2(M+4) , and the smoothing parameter µ satisfies

µ ≤ Df
(M+4)

√
2N

, where Df :=

[
2(f(x1)−f∗)

L

]1/2

(f∗ denotes the optimal value) [45, Theorem 3.2].

Note that the theoretical results for ZO-SGD is valid only for smooth cases, however we include it

here for comparison purposes.

Nonconvex Sparse Optimization Problem. Consider the following optimization problem

min
x∈RM

N∑
i=1

fi(x) s.t. ‖x‖1 ≤ `, (5.60)
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Figure 5.6: The Optimality Gap for Nonconvex Sparse Optimization problem.

where fi(x) = x>Γx− γ>x, (Γ ∈ RM×M , and γ ∈ RM ), and ` is a positive constant that controls

the sparsity level of the solution. In this problem the matrix Γ ∈ RM×M is not necessarily a positive

semidefinite matrix, thus the problem is not convex; see for example high dimensional regression

problem with noisy observations in [90, problem (2.4)] . This problem is a special case of the

original problem in (5.44) with h(x) being the indicator function of the set {x | ‖x‖1 ≤ `}.

We compare the following four algorithms: ZONE-S with constant stepsize ρi =
√

5.5Lµ,i
∑N

i=1

√
5.5Lµ,i;

ZONE-S with increasing penalty parameter ρi =
√
r; ZO-GD with constant stepsize (1/ρ =

1
4L(M+4)), and ZO-SGD with constant step size 1/ρ = 1

2L(M+4) . The problem dimension is set

as N = 10, and M = 100. The algorithm stops when the iteration counter reaches T = 1000.

The results are plotted in Figure 5.6, which depicts the progress of the optimality gap [defined

as in (5.56)] versus the number of iterations. Each point in this figure is obtained by averaging

over 50 independent trials. We can observe that ZONE-S converges faster than the ZO-GD and

ZO-SGD. Furthermore, the performance of ZONE-S improves when using the increasing stepsize,

as compared to that of the constant stepsize.

5.5 Conclusion

In this work, we consider nonconvex multi-agent optimization problem under zeroth-order setup.

We design algorithms to solve the problem over two popular network structures, namely MNet and
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SNet. We have rigorously analyzed the convergence rate of the proposed algorithms and we have

proved that both algorithms converge to the set of first-order stationary solutions under very mild

conditions on the problem and by appropriately choosing the algorithm parameters.

5.6 Appendix. Proofs for ZONE-M

In this appendix we provide the proofs related to the convergence analysis of ZONE-M algo-

rithm.

5.6.1 Proof of Lemma 23

Rearranging terms in (5.21) we get

λr+1 − λr = ρAzr+1. (5.61)

Applying this equality and the definition of L+ in (5.12b) into the optimality condition for problem

(5.20), we obtain

GJ,rµ +A>λr+1 + ρL+(zr+1 − zr) = 0. (5.62)

From (5.61) it is clear that λr+1 − λr lies in the column space of A, therefore the following is true

√
σmin‖λr+1 − λr‖ ≤ ‖A>(λr+1 − λr)‖, (5.63)

where σmin denotes the smallest non-zero eigenvalue of A>A.

Replacing r with r − 1 in equation (5.62), and then using the definition of wr := (zr+1 − zr)−

(zr − zr−1) we further get∥∥∥∥λr+1 − λr
∥∥∥∥2

≤ 1

σmin

∥∥∥∥GJ,rµ −GJ,r−1
µ +ρL+wr

∥∥∥∥2

=
1

σmin
‖GJ,rµ −GJ,r−1

µ +∇gµ(zr)−∇gµ(zr)+ρL+wr‖2

(5.31)

≤ 3

σmin
‖GJ,rµ −∇gµ(zr)‖2 +

3

σmin
‖∇gµ(zr)−GJ,r−1

µ ‖2 +
3ρ2

σmin
‖L+wr‖2. (5.64)
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Let us add and subtract ∇gµ(zr−1) to the second term on the RHS of (5.64), and take the

expectation on both sides

E‖λr+1 − λr‖2 ≤ 3

σmin
E‖GJ,rµ −∇gµ(zr)‖2

+
6

σmin
E‖∇gµ(zr)−∇gµ(zr−1)‖2 +

3ρ2

σmin
E‖L+wr‖2 +

6

σmin
E‖∇gµ(zr−1)−GJ,r−1

µ ‖2

(i)

≤ 9σ̃2

Jσmin
+

6L2
µ

σmin
E‖zr − zr−1‖2 +

3ρ2‖L+‖
σmin

E‖wr‖2L+ , (5.65)

where (i) is true by applying Lemma 22 and utilizing the facts that ∇gµ(z) is Lµ-smooth and

‖L+wr‖2 ≤ ‖L+‖‖wr‖2L+ . The lemma is proved. Q.E.D.

5.6.2 Proof of Lemma 24

Using Assumption B.1, and the fact that D � I, it can be shown that if 2ρ ≥ L̂, then function

Lρ(z, λ) +
ρ

2
‖z − zr‖2L+ = g(z) + 〈λ,Az〉+

ρ

2
‖Az‖2 +

ρ

2
‖z − zr‖2L+ ,

is strongly convex with modulus 2ρ − L̂. See [150, Theorem 2.1]. Using this fact, let us bound

Lr+1
ρ − Lrρ.

Lr+1
ρ − Lrρ = Lr+1

ρ − Lρ(zr+1, λr) + Lρ(z
r+1, λr)− Lrρ

(i)
= 〈∇zLρ(zr+1, λr) + ρL+(zr+1 − zr), zr+1 − zr〉+

1

ρ
‖λr+1 − λr‖2 − 2ρ− L̂

2
‖zr+1 − zr‖2. (5.66)

where (i) is true due to the strong convexity of Lρ(z, λ) + ρ
2‖z − z

r‖2L+ with modulus 2ρ − L̂ and

(5.61). Now using (5.62) we further have

Lr+1
ρ − Lrρ ≤

〈
∇g(zr+1)−GJ,rµ , zr+1 − zr

〉
+

1

ρ
‖λr+1 − λr‖2 − 2ρ− L̂

2
‖zr+1 − zr‖2

(i)

≤ 1

ρ
‖λr+1 − λr‖2 +

L̂2 − 2ρ+ L̂

2
‖zr+1 − zr‖2 +

1

2L̂2
‖∇g(zr+1)−GJ,rµ ‖2,
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where (i) is application of (5.30) for ε = L̂2. Taking expectation on both sides we get

E
[
Lr+1
ρ − Lrρ

]
(i)

≤ 9σ̃2

ρJσmin
+

6L2
µ

ρσmin
E‖zr − zr−1‖2 +

3ρ‖L+‖
σmin

E‖wr‖2L+

+
L̂2 − 2ρ+ L̂

2
E‖zr+1 − zr‖2 +

1

2L̂2
E‖∇g(zr+1)−GJ,rµ ‖2

(ii)

≤
(

9

ρσmin
+

3

2L̂2

)
σ̃2

J
+

3µ2(Q+ 3)3

8
+

6L2
µ

ρσmin
E‖zr − zr−1‖2

+
3ρ‖L+‖
σmin

E‖wr‖2L+ +
L̂2 − 2ρ+ L̂+ 3

2
E‖zr+1 − zr‖2, (5.67)

where in (i) we use Lemma 23 to bound E‖λr+1 − λr‖, in (ii) we apply (5.31), (5.5), (5.9), and the

fact that ∇gµ(z) is Lµ-smooth with Lµ ≤ L̂.

Next we bound V r+1 − V r. Optimality condition for problem (5.20) together with equation

(5.21) yield the following

〈GJ,rµ +A>λr+1 + ρL+(zr+1 − zr), zr+1 − z〉 ≤ 0, ∀ z ∈ RQ.

Similarly, for the (r − 1)th iteration, we have

〈GJ,r−1
µ +A>λr + ρL+(zr − zr−1), zr − z〉 ≤ 0, ∀ z ∈ RQ.

Now let us set z = zr in first, z = zr+1 in second equation, and add them. We obtain

〈A>(λr+1 − λr), zr+1 − zr〉 ≤ −〈GJ,rµ −GJ,r−1
µ + ρL+wr, zr+1 − zr〉. (5.68)

The left hand side can be expressed in the following way

〈A>(λr+1 − λr), zr+1 − zr〉 = ρ〈Azr+1, Azr+1 −Azr〉

(5.29)
=

ρ

2

(
‖Azr+1‖2 − ‖Azr‖2 + ‖A(zr+1 − zr)‖2

)
. (5.69)
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For the right hand side we have

− 〈GJ,rµ −GJ,r−1
µ + ρL+wr, zr+1 − zr〉

= −〈GJ,rµ −GJ,r−1
µ , zr+1 − zr〉 − 〈ρL+wr, zr+1 − zr〉

(5.30)

≤ 1

2L̂
‖GJ,rµ −GJ,r−1

µ ‖2 +
L̂

2
‖zr+1 − zr‖2 − ρ〈L+wr, zr+1 − zr〉

(i)

≤ 3

2L̂

(
‖GJ,rµ −∇gµ(zr)‖2 + ‖∇gµ(zr−1)−GJ,r−1

µ ‖2

+ ‖∇gµ(zr)−∇gµ(zr−1)‖2
)

+
L̂

2
‖zr+1 − zr‖2 − ρ〈L+wr, zr+1 − zr〉.

To get (i) we add and subtract ∇gµ(zr) + ∇gµ(zr−1) to GJ,rµ − GJ,r−1
µ and use (5.31). Taking

expectation on both sides, we have

− E〈GJ,rµ −GJ,r−1
µ + ρL+wr, zr+1 − zr〉

(5.9)

≤ 3

2L̂

(
2σ̃2

J
+ L̂2‖zr − zr−1‖2

)
+
L̂

2
E‖zr+1 − zr‖2 − ρE〈L+wr, zr+1 − zr〉

(i)
=

3σ̃2

L̂J
+

3L̂

2
E‖zr − zr−1‖2 +

L̂

2
E‖zr+1 − zr‖2

+
ρ

2
E
(
‖zr − zr−1‖2L+ − ‖zr+1 − zr‖2L+ − ‖wr‖2L+

)
, (5.70)

where in (i) we apply (5.29) with b = (L+)1/2(zr+1 − zr) and a = (L+)1/2(zr − zr−1). Combining

(5.68), (5.69) and (5.70), we obtain

ρ

2
E
(
‖Azr+1‖2 − ‖Azr‖2 + ‖A(zr+1 − zr)‖2

)
≤ 3σ̃2

L̂J
+

3L̂

2
E‖zr − zr−1‖2 +

L̂

2
E‖zr+1 − zr‖2

+
ρ

2
E
(
‖zr − zr−1‖2L+ − ‖zr+1 − zr‖2L+ − ‖wr‖2L+

)
. (5.71)

Recall that matrix B := L+ + k
cρIQ, and V r+1 is defined as

V r+1 :=
ρ

2

(
‖Azr+1‖2 + ‖zr+1 − zr‖2B

)
=
ρ

2

(
‖Azr+1‖2 + ‖zr+1 − zr‖2L+

)
+
k

2c
‖zr+1 − zr‖2.
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Rearranging terms in (5.71), we have

E[V r+1 − V r] ≤
(
L̂

2
+
k

2c

)
E‖zr+1 − zr‖2 +

3σ̃2

L̂J

+

(
3L̂

2
− k

2c

)
E‖zr − zr−1‖2 − ρ

2
E
(
‖wr‖2L+ + ‖A(zr+1 − zr)‖2

)
≤
(
L̂

2
+
k

2c

)
E‖zr+1 − zr‖2 +

(
3L̂

2
− k

2c

)
E‖zr − zr−1‖2 − ρ

2
E‖wr‖2L+ +

3σ̃2

L̂J
.

(5.72)

Now let us consider the definition of P r+1 := Lr+1
ρ + cV r+1. Utilizing (5.67), and (5.72) and

definition of k as k := 2

(
6L̂2

ρσmin
+ 3cL̂

2

)
eventually we obtain

E
[
P r+1 − P r

]
≤ k − c1

2
E‖zr+1 − zr‖2 − c2E‖wr‖2L+ +

3µ2(Q+ 3)3

8
+ c3

σ̃2

J
, (5.73)

where we define,

c1 := 2ρ− L̂2 − (c+ 1)L̂− 3, c2 :=

(
cρ

2
− 3ρ‖L+‖

σmin

)
, c3 :=

9

ρσmin
+

3

2L̂2
+

3c

L̂
.

The lemma is proved. Q.E.D.

5.6.3 Proof of Lemma 25

Similar to the proof of Lemma 23 utilizing the optimality condition for x-subproblem we have

GJ,rµ +A>λr+1 + ρL+(zr+1 − zr) = 0. (5.74)

From this equation we have

‖A>λr+1‖2 = ‖GJ,rµ + ρL+(zr+1 − zr)‖2

≤ 2‖GJ,rµ ‖2 + 2ρ2‖L+‖2‖zr+1 − zr‖2. (5.75)

From here, we further have

σmin‖λr+1‖2 ≤ 2‖GJ,rµ ‖2 + 2ρ2‖L+‖2‖zr+1 − zr‖2. (5.76)



www.manaraa.com

167

Dividing both sides by σmin yields

‖λr+1‖2 ≤ 2

σmin
‖GJ,rµ ‖2 +

2ρ2‖L+‖2

σmin
‖zr+1 − zr‖2. (5.77)

Now based on the definition of potential function P r+1 in equation (5.33) we have

P r+1 = g(zr+1) +
ρ

2
‖Azr+1 +

1

ρ
λr+1‖2 − 1

ρ2
‖λr+1‖2 +

cρ

2
‖Azr+1‖2 +

cρ

2
‖zr+1 − zr‖2B, (5.78)

where B := L+ + k
2I [note that k = 2( 6L̂2

ρσmin
+ 3cL̂

2 )]. Plugging (5.77) into (5.78), and utilizing the

fact that g(zr+1) ≥ 0, cρ
2 ‖Az

r+1‖2 ≥ 0, and ‖Azr+1 + 1
ρλ

r+1‖2 ≥ 0 we get

P r+1 ≥ − 2

ρ2σmin
‖GJ,rµ ‖2 −

2‖L+‖2

σmin
‖zr+1 − zr‖2 +

cρ

2
‖zr+1 − zr‖2B. (5.79)

Since L+ is PSD matrix we have B � k
2I. Also because 6L̂2

ρσmin
≥ 0, we have B � 3cL̂

2 I. Utilizing

this, we can simplify the above inequality as follows

P r+1 ≥ − 2

ρ2σmin
‖GJ,rµ ‖2 + (zr+1 − zr)H(zr+1 − zr), (5.80)

where H := (−2‖L+‖2
σmin

+ 3L̂2

σmin
c+ 3ρL̂2

8 c2)I. Therefore, if

c ≥ −b1 +
√
b21 − 4a1d1

2a1
, (5.81)

where

a1 =
3ρL̂

8
, b1 =

3L̂2

σmin
, d1 = −2‖L+‖2

σmin
,

then we have (zr+1− zr)H(zr+1− zr) ≥ 0. Hence, with this choice of c we get the following bound

for the potential function

P r+1 ≥ − 2

ρ2σmin
‖GJ,rµ ‖2. (5.82)

Tacking expectation on both sides we have

E[P r+1] ≥ − 2

ρ2σmin
E‖GJ,rµ ‖2. (5.83)
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Now let us prove that E‖GJ,rµ ‖2 is upper bounded as follows:

E‖GJ,rµ ‖2 = E‖GJ,rµ −∇gµ(zr) +∇gµ(zr)‖2

≤ 2E‖GJ,rµ −∇gµ(zr)‖2 + 2E‖∇gµ(zr)‖2

(i)

≤ 2σ̃

J
+ 2E‖∇gµ(zr)‖2

(ii)

≤ 2σ̃ + 4E‖∇g(zr)‖2 + µ2L̂2(Q+ 3)3

(iii)

≤ 2σ̃ + 4K2 + µ2L̂2(Q+ 3)3, (5.84)

where (i) is true due to Lemma 1, (ii) comes from the fact that J ≥ 1, and ‖∇gµ(zr)‖2 ≤

2‖∇g(zr)‖2 + µ2

2 L̂
2(Q + 3)3 [45, Theorem 3.1], and in (iii) we use assumption A1. Therefore, we

have proved that there exists a constant K2 := 2σ̃+ 4K2 +µ2L̂2(Q+ 3)3 such that E‖GJ,rµ ‖2 ≤ K2.

Finally, plugging this bound into equation (5.83), we get

E[P r+1] ≥ − 2

ρ2σmin
K2. (5.85)

Since K2 is not dependent on T , in order to prove the Lemma we just need to set T -independent

lower bound P := − 2
ρ2σmin

K2.

5.6.4 Proof of Theorem 9

Let us bound the optimality gap given in (5.40) term by term. First we bound the gradient of

AL function with respect to variable z in point (zr+1, λr) in the following way

‖∇zLρ(zr+1, λr)‖2 = ‖∇g(zr+1) +A>λr + ρA>Azr+1‖2

(5.21)
= ‖∇g(zr+1) +A>λr+1‖2

(5.74)
= ‖∇g(zr+1)−GJ,rµ − ρL+(zr+1 − zr)‖2

(5.31)

≤ 2‖∇g(zr+1)−GJ,rµ ‖2 + 2ρ2‖L+(zr+1 − zr)‖2

(i)

≤ 4(‖∇g(zr+1)−∇gµ(zr)‖2 + ‖∇gµ(zr)−GJ,rµ ‖2) + 2ρ2‖L+(zr+1 − zr)‖2, (5.86)
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where in (i) we add and subtract ∇gµ(zr) to ∇g(zr+1)−GJ,rµ and apply (5.31). Further, let us take

expectation on both sides of (5.86)

E‖∇zLρ(zr+1, λr)‖2

≤ 4E
(
‖∇g(zr+1)−∇gµ(zr)‖2 + ‖∇gµ(zr)−GJ,rµ ‖2

)
+ 2ρ2E‖L+(zr+1 − zr)‖2

(i)

≤ 8E
(
‖∇g(zr+1)−∇gµ(zr+1)‖2 + L̂2‖zr+1 − zr‖2

)
+

4σ̃2

J
+ 2ρ2E‖L+(zr+1 − zr)‖2

(5.5)

≤ 2µ2L̂2(Q+ 3)3 + 8L̂2E‖zr+1 − zr‖2 +
4σ̃2

J
+ 2ρ2E‖L+(zr+1 − zr)‖2, (5.87)

where in (i) we applied (5.9), (5.31), and the fact that ∇gµ(z) is Lµ-smooth with Lµ ≤ L̂. Second,

let us bound the expected value of the constraint violation. Utilizing the equation (5.21) we have

‖Azr+1‖2 =
1

ρ2
‖λr+1 − λr‖2.

Taking expectation on the above identity, and utilizing the fact that Lµ ≤ L̂, and (5.32), we obtain

the following

E‖Azr+1‖2 =
1

ρ2
E‖λr+1 − λr‖2

≤ 9σ̃2

Jρ2σmin
+

6L̂2

ρ2σmin
E‖zr − zr−1‖2 +

3‖L+‖
σmin

E‖wr‖2L+ . (5.88)

Summing up (5.87) and (5.88), we have the following bound for the optimality gap

Φr+1 ≤ α1E‖zr+1 − zr‖2 + α2E‖zr − zr−1‖2 + α3E‖wr‖2L+

+

(
9 + 4ρ2σmin

ρ2σmin

)
σ̃2

J
+ 2µ2L̂2(Q+ 3)3, (5.89)

where α1, α2, α3 are positive constants given by

α1 = 8L̂2 + 2ρ2‖L+‖2, α2 =
6L̂2

ρ2σmin
, α3 =

3‖L+‖
σmin

.

Summing both sides of (5.89), we obtain the following

T∑
r=1

Φr+1 ≤
T−1∑
r=1

(α1 + α2)E‖zr+1 − zr‖2 +

T∑
r=1

α3E‖wr‖2L+

+ α2E‖z1 − z0‖2 + α1E‖zT+1 − zT ‖2

+ 2Tµ2L̂2(Q+ 3)3 + T

(
9 + 4ρ2σmin

ρ2σmin

)
σ̃2

J
. (5.90)
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Applying Lemma 24 and summing both sides of (5.35) over T iterations, we obtain

E
[
P 1 − P T+1

]
≥

T−1∑
r=1

c1 − k
2

E‖zr+1 − zr‖2 +
T∑
r=1

c2E‖wr‖2L+

+
c1 − k

2
E‖zT+1 − zT ‖2 − 3Tµ2(Q+ 3)3

8
− Tc3σ̃

2

J
. (5.91)

Let us set ζ = max(α1+α2,α3)

min(
c1−k

2
,c2)

. Combining the two inequalities (5.90) and (5.91), and utilizing the

fact that E[P T+1] is lower bounded by P , we arrive at the following inequality

T∑
r=1

Φr+1 ≤ ζE[P 1 − P ] + α2E‖z1 − z0‖2

+ T

(
ζc3 +

9 + 4ρ2σmin

ρ2σmin

)
σ̃2

J
+ T

(
3ζ

8
+ 2L̂2

)
µ2(Q+ 3)3. (5.92)

Since u is a uniformly random variable in the set {1, 2, · · · , T} we have

Eu[Φu] =
1

T

T∑
r=1

Φr+1. (5.93)

Dividing both sides of (5.92) on T and using (5.93) implies the following

Eu[Φu] ≤ ζE[P 1 − P ] + α2E‖z1 − z0‖2

T

+

(
ζc3 +

9 + 4ρ2σmin

ρ2σmin

)
σ̃2

J
+

(
3ζ

8
+ 2L̂2

)
µ2(Q+ 3)3

By setting

γ1 = ζE[P 1 − P ] + α2E‖z1 − z0‖2,

γ2 = ζc3 +
9 + 4ρ2σmin

ρ2σmin
, γ3 =

(
3ζ

8
+ 2L̂2

)
(Q+ 3)3, (5.94)

we conclude the proof. Q.E.D.

5.7 Appendix. Proofs for ZONE-S

This appendix contains the proof of the lemmas in Section 5.3 which are related to ZONE-S

algorithm.

In order to facilitate the derivations, in the following let us present some key properties of

ZONE-S algorithm. Let us define r(j) := max{t | t < r + 1, j = it} which is the last iteration in
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which agent j is picked before iteration r + 1. From this definition we can see that r(ir) = r. Let

us repeat the update equations of ZONE-S algorithm

zr+1
ir

= xr − 1

αirρir

[
λrir + Ḡµ,ir(x

r, φr, ξr)

]
; (5.95)

λr+1
ir

= λrir + αirρir

(
zr+1
ir
− xr

)
; (5.96)

λr+1
j = λrj , zr+1

j = xr, ∀ j 6= ir. (5.97)

Property 1: Compact form for dual update. Combining (5.95), (5.96), and using the

definition of r(j) we get

λr+1
ir

= −Ḡµ,ir(xr, φr, ξr), (5.98)

λr+1
j = λrj = −Ḡµ,j(xr(j), φr(j), ξr(j)), j 6= ir. (5.99)

Using the definition of sequence yr [y0 = x0, yrj = yr−1
j , if j 6= ir, else yrir = xr, ∀ r ≥ 1] we

have yri = xr(i) for all i = 1, 2, · · ·N . Using this we get the following compact form

λr+1
i = −Ḡµ,i(yri , φr(i), ξr(i)), i = 1, · · · , N. (5.100)

Property 2: Compact form for primal update. From (5.97) for j 6= ir we have

zr+1
j = xr

(5.100)
= xr − 1

αjρj
[λr+1
j + Ḡµ,j(y

r
j , φ

r(j), ξr(j))]

(5.97)
= xr − 1

αjρj
[λrj + Ḡµ,i(y

r
j , φ

r(j), ξr(j))]. (5.101)

Considering (5.95), and (5.101) we can express the update equation for z in ZONE-S algorithms

in the following compact form

zr+1
i = xr − 1

αiρi

[
λri + Ḡµ,i(y

r
i , φ

r(i), ξr(i))

]
, i = 1, · · · , N. (5.102)

Property 3: Bound the distance between update direction and the gradient direction.

Let us define

ur+1 := β

( N∑
i=1

ρiz
r+1
i +

N∑
i=1

λri

)
, (5.103)
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where we set β := 1/
∑N

i=1 ρi. Using (5.103), it is easy to check that x-update (5.52) is equivalent

to solving the following problem

xr+1 = arg min
x

1

2β
‖x− ur+1‖2 + h(x)

= prox
1/β
h (ur+1). (5.104)

The optimality condition for this problem is given by

xr+1 − ur+1 + βηr+1 = 0, (5.105)

where ηr+1 ∈ ∂h(xr+1) is a subgradient of h at xr+1. [When there is no confusion we use the

shorthand notation Ḡrµ,i to denote Ḡµ,i(x
r, φr, ξr)]

ur+1 = β

( N∑
i=1

ρiz
r+1
i +

N∑
i=1

λri

)
(5.97)

= β

( N∑
i=1

ρix
r − ρir(xr − zr+1

ir
) +

N∑
i=1

λri

)
(5.100),(5.95)

= xr − β

αir

[
Ḡrµ,ir − Ḡµ,ir(y

r−1
ir

, φ(r−1)(ir), ξ(r−1)(ir))

]
− β

N∑
i=1

Ḡµ,i(y
r−1
i , φ(r−1)(i), ξ(r−1)(i)). (5.106)

Let us further define

vrir :=
N∑
i=1

Ḡµ,i(y
r−1
i , φ(r−1)(i), ξ(r−1)(i))

+
1

αir

[
Ḡrµ,ir − Ḡµ,ir(y

r−1
ir

, φ(r−1)(ir), ξ(r−1)(ir))

]
. (5.107)

We conclude that

ur+1 = xr − βvrir . (5.108)

Plugging (5.108) into (5.105) we obtain

xr+1 = xr − β(vrir + ηr+1). (5.109)
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Now let us bound ‖
∑N

i=1∇fµ,i(xr)− vrir‖. Using the definition of vrir we have

∥∥∥∥ N∑
i=1

∇fµ,i(xr)− vrir

∥∥∥∥2

(5.107)
=

∥∥∥∥ N∑
i=1

∇fµ,i(xr)−
N∑
i=1

Ḡµ,i(y
r−1
i , φ(r−1)(i), ξ(r−1)(i))

− 1

αir

[
Ḡrµ,ir − Ḡµ,ir(y

r−1
ir

, φ(r−1)(ir), ξ(r−1)(ir))

]∥∥∥∥2

. (5.110)

Let us set J r := {ir, φr, ξr}. Setting αi = pi and taking conditional expectation on both sides, we

have

EJ r
[∥∥∥∥ N∑

i=1

∇fµ,i(xr)− vrir

∥∥∥∥2

|Fr
]

= EJ r
[∥∥∥∥ N∑

i=1

∇fµ,i(xr)−
N∑
i=1

Ḡµ,i(y
r−1
i , φ(r−1)(i), ξ(r−1)(i))

− 1

αir

[
Ḡrµ,ir − Ḡµ,ir(y

r−1
ir

, φ(r−1)(ir), ξ(r−1)(ir))

]∥∥∥∥2

Fr
]

(i)

≤ EJ r
[∥∥∥∥Ḡrµ,ir − Ḡµ,ir(yr−1

ir
, φ(r−1)(ir), ξ(r−1)(ir))

αir

∥∥∥∥2

Fr
]
,

where (i) is true because E[‖x−E[x]‖2] = E[‖x‖2]− ‖E[x]‖2 ≤ E[‖x‖2] and the following identity

EJ r
[

1

αir

[
Ḡrµ,ir − Ḡµ,ir(y

r−1
ir

, φ(r−1)(ir), ξ(r−1)(ir))

]
| Fr

]
=

N∑
i=1

∇fµ,i(xr)−
N∑
i=1

Ḡµ,i(y
r−1
i , φ(r−1)(i), ξ(r−1)(i)).

Now if we take expectation with respect to ir, (given Fr)

EJ r
[∥∥∥∥ N∑

i=1

∇fµ,i(xr)− vrir

∥∥∥∥2

|Fr
]

≤
N∑
i=1

1

pi
Eφr,ξr

[∥∥∥∥Ḡrµ,i − Ḡµ,i(yr−1
i , φ(r−1)(i), ξ(r−1)(i))

∥∥∥∥2

|Fr
]

=
N∑
i=1

1

pi
Eφr,ξr

[∥∥∥∥Ḡrµ,i −∇fµ,i(xr) +∇fµ,i(xr)−∇fµ,i(yr−1
i )

+∇fµ,i(yr−1
i )− Ḡµ,i(yr−1

i , φ(r−1)(i), ξ(r−1)(i))

∥∥∥∥2

|Fr
]
.
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Then utilizing (5.31) and (5.9), we have

EJ r
[∥∥∥∥ N∑

i=1

∇fµ,i(xr)− vrir

∥∥∥∥2

|Fr
]

≤ 3

N∑
i=1

1

pi

(
σ̃2

J
+

∥∥∥∥∇fµ,i(xr)−∇fµ,i(yr−1
i )

∥∥∥∥2

+

∥∥∥∥∇fµ,i(yr−1
i )− Ḡµ,i(yr−1

i , φ(r−1)(i), ξ(r−1)(i))

∥∥∥∥2)
. (5.111)

Using the definition of p̃ =
∑N

i=1
1
pi

, overall we have the following

EJ r
[∥∥∥∥ N∑

i=1

∇fµ,i(xr)− vrir

∥∥∥∥2

| Fr
]

≤ 3p̃σ̃2

J
+

N∑
i=1

3

pi

(∥∥∥∥∇fµ,i(xr)−∇fµ,i(yr−1
i )

∥∥∥∥2

+

∥∥∥∥∇fµ,i(yr−1
i )− Ḡµ,i(yr−1

i , φ(r−1)(i), ξ(r−1)(i))

∥∥∥∥2)
. (5.112)

Using the tower property of conditional expectation we have

E
∥∥∥∥ N∑
i=1

∇fµ,i(xr)− vrir

∥∥∥∥2

= EFr,J r
∥∥∥∥ N∑
i=1

∇fµ,i(xr)− vrir

∥∥∥∥2

= EFr
[
EJ r

[∥∥ N∑
i=1

∇fµ,i(xr)− vrir
∥∥2 | Fr

]]
. (5.113)

Now let us break the filtration as Fr = Fr1 ∪ Fr2 where Fr1 := {it}r−1
t=1 , and Fr2 := {φt, ξt}r−1

t=1 .

Using these notations we have

EFr
∥∥∥∥∇fµ,i(yr−1

i )− Ḡµ,i(yr−1
i , φ(r−1)(i), ξ(r−1)(i))

∥∥∥∥2

= EFr1

[
EFr2

∥∥∥∥∇fµ,i(yr−1
i )− Ḡµ,i(yr−1

i , φ(r−1)(i), ξ(r−1)(i))

∥∥∥∥2

| Fr1
]

(5.9)

≤ σ̃2

J
. (5.114)

Combining (5.112), (5.113), (5.114), we obtain

E
∥∥∥∥ N∑
i=1

∇fµ,i(xr)− vrir

∥∥∥∥2

≤
N∑
i=1

3

pi
E
∥∥∥∥∇fµ,i(xr)−∇fµ,i(yr−1

i )

∥∥∥∥2

+
6p̃σ̃2

J
. (5.115)
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5.7.1 Proof of Lemma 26

By assumption αi = pi, according to the definition of potential function Q̃r, we have

EJ r [Q̃r+1 − Q̃r | Fr]

= EJ r
[ N∑
i=1

(
fµ,i(x

r+1)− fµ,i(xr)
)

+ h(xr+1)− h(xr) | Fr
]

+ EJ r
[ N∑
i=1

4

piρi

∥∥∥∥∇fµ,i(xr+1)−∇fµ,i(yri )
∥∥∥∥2

− 4

piρi

∥∥∥∥∇fµ,i(xr)−∇fµ,i(yr−1
i )

∥∥∥∥2

| Fr
]
. (5.116)

The proof consists of the following steps:

Step 1). We bound the first term in (5.116) as follows

EJ r
[ N∑
i=1

(
fµ,i(x

r+1)− fµ,i(xr)
)

+ h(xr+1)− h(xr) | Fr
]

(i)

≤ EJ r
[ N∑
i=1

〈∇fµ,i(xr), xr+1 − xr〉+ 〈ηr+1, xr+1 − xr〉+

∑N
i=1 Lµ,i

2
‖xr+1 − xr‖2 | Fr

]

= EJ r
[〈 N∑

i=1

∇fµ,i(xr) + ηr+1 +
1

β
(xr+1 − xr), xr+1 − xr

〉
| Fr

]

−
(

1

β
−
∑N

i=1 Lµ,i
2

)
EJ r

[
‖xr+1 − xr‖2 | Fr

]
.

Then from (5.109) we further have

EJ r
[ N∑
i=1

(
fµ,i(x

r+1)− fµ,i(xr)
)

+ h(xr+1)− h(xr) | Fr
]

≤ EJ r
[〈 N∑

i=1

∇fµ,i(xr)− vrir , x
r+1 − xr

〉
| Fr

]

−
(

1

β
−
∑N

i=1 Lµ,i
2

)
EJ r

[
‖xr+1 − xr‖2 | Fr

]
(ii)

≤
N∑
i=1

3β

2pi

(∥∥∥∥∇fµ,i(xr)−∇fµ,i(yr−1
i )

∥∥∥∥2

+

∥∥∥∥∇fµ,i(yr−1
i )− Ḡµ,i(yr−1

i , φ(r−1)(i), ξ(r−1)(i))

∥∥∥∥2)
−
(

1

2β
−
∑N

i=1 Lµ,i
2

)
EJ r

[
‖xr+1 − xr‖2 | Fr

]
+

3p̃βσ̃2

2J
, (5.117)
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where in (i) we have used the Lipschitz continuity of the gradients of fµ,i, and the convexity of

function h; in (ii) we utilize (5.30) with ε = 1
β , and (5.112).

Step 2). In this step we bound the second term in equation (5.116) as follows

EJ r
[∥∥∇fµ,i(xr+1)−∇fµ,i(yri )

∥∥2 | Fr
]

(i)

≤ (1 + εi)EJ r
[∥∥∇fµ,i(xr+1)−∇fµ,i(xr)

∥∥2 | Fr
]

+

(
1 +

1

εi

)
EJ r

∥∥∥∥∇fµ,i(xr)−∇fµ,i(yri )‖2 | Fr] (5.118)

(ii)
= (1 + εi)EJ r

[
‖∇fµ,i(xr+1)−∇fµ,i(xr)‖2 | Fr

]
+ (1− pi)

(
1 +

1

εi

)
‖∇fµ,i(xr)−∇fµ,i(yr−1

i )‖2, (5.119)

where in (i) we first apply (5.30). Note that when Fr is given the randomness of the first and

second term in (5.118) come from xr+1 and yri respectively. Therefore, equality (ii) is true because

yri = xr, with probability pi, and yri = yr−1
i , with probability 1 − pi. Setting εi = 2

pi
, the second

part of (5.116) can be bounded as

EJ r
[ N∑
i=1

4

piρi

∥∥∥∥∇fµ,i(xr+1)−∇fµ,i(yri )
∥∥∥∥2

− 4

piρi

∥∥∥∥∇fµ,i(xr)−∇fµ,i(yr−1
i )

∥∥∥∥2

| Fr
]

≤
N∑
i=1

4L2
µ,i(2 + pi)

p2
i ρi

EJ r‖xr+1 − xr‖2 −
N∑
i=1

4(1 + pi)

2ρi

∥∥∥∥∇fµ,i(xr)−∇fµ,i(yr−1
i )

∥∥∥∥2

. (5.120)

Step 3). In this step we combine the results from the previous steps to obtain the desired descent

estimate. Combining (5.117) and (5.120) eventually we have

EJ r [Q̃r+1 − Q̃r | Fr]

≤
N∑
i=1

(
3β

2pi
− 4(1 + pi)

2ρi

)∥∥∥∥∇fµ,i(xr)−∇fµ,i(yr−1
i )

∥∥∥∥2

+

N∑
i=1

(
4L2

µ,i(2 + pi)

p2
i ρi

+
Lµ,i

2
− ρi

2

)
EJ r

[
‖xr+1 − xr‖2 | Fr

]

+
N∑
i=1

3β

2pi

∥∥∥∥∇fµ,i(yr−1
i )− Ḡµ,i(yr−1

i , φ(r−1)(i), ξ(r−1)(i))

∥∥∥∥2

+
3p̃βσ̃2

2J
. (5.121)
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Using the properties of conditional expectation we have

E[Q̃r+1 − Q̃r] = EFr
[
EJ r [Q̃r+1 − Q̃r | Fr]

]
. (5.122)

Plugging (5.121) in this relationship and utilizing (5.114), and the definition of β := 1/
∑N

i=1 ρi,

yield

E[Q̃r+1 − Q̃r]

≤
N∑
i=1

(
3β

2pi
− 4(1 + pi)

2ρi

)
E
∥∥∥∥∇fµ,i(xr)−∇fµ,i(yr−1

i )

∥∥∥∥2

+

N∑
i=1

(
4L2

µ,i(2 + pi)

p2
i ρi

+
Lµ,i

2
− ρi

2

)
E
[
‖xr+1 − xr‖2

]
+

3p̃βσ̃2

J
. (5.123)

Let us define {c̃i} and ĉ as following

c̃i =
3β

2pi
− 4(1 + pi)

2ρi
, ĉ =

N∑
i=1

(
4L2

µ,i(2 + pi)

p2
i ρi

+
Lµ,i

2
− ρi

2

)
.

In order to prove the lemma it remains to prove that c̃i < − 1
2ρi
∀ i, and ĉ < −

∑N
i=1

ρi
100 . If we set

pi = ρi∑N
i=1 ρi

, then we have the following

c̃i =
3

2ρi
− 4(1 + pi)

2ρi
≤ 3

2ρi
− 4

2ρi
= − 1

2ρi
.

To show that ĉ ≤ −
∑N

i=1
ρi

100 , it is sufficient to have

4L2
µ,i(2 + pi)

p2
i ρi

+
Lµ,i

2
− ρi

2
≤ − ρi

100
. (5.124)

It is easy to check that this inequality holds true for ρi ≥ 5.5Lµ,i
pi

. The lemma is proved. Q.E.D.

5.7.2 Proof of Theorem 10

Here we only prove the first part of the theorem. Similar steps can be followed to prove the

second part. First let us define the smoothed version of optimality gap as follows

Ψr
µ =

1

β2
E
∥∥∥∥xr − prox

1/β
h [xr − β∇fµ(xr)]

∥∥∥∥2

. (5.125)
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We bound the gap in the following way

1

β2

∥∥xr − prox
1/β
h [xr − β∇fµ(xr)]

∥∥2

(i)
=

1

β2

∥∥xr − xr+1 + prox
1/β
h (ur+1)− prox

1/β
h [xr − β∇fµ(xr)]

∥∥2

(ii)

≤ 2

β2
‖xr+1 − xr‖2 +

2

β2
‖β∇fµ(xr) + ur+1 − xr‖2

(5.108)
=

2

β2
‖xr+1 − xr‖2 + 2‖

N∑
i=1

∇fµ,i(xr)− vrir‖
2, (5.126)

where (i) is true due to (5.104); (ii) is true due to the nonexpansivness of the prox operator, and

equation (5.31). Taking expectation on both sides yields

Ψr
µ ≤

2

β2
E‖xr+1 − xr‖2 + 2E‖

N∑
i=1

∇fµ,i(xr)− vrir‖
2

(i)

≤ 2

β2
E‖xr+1 − xr‖2 +

6

β

N∑
i=1

1

ρi
E
∥∥∥∥∇fµ,i(xr)−∇fµ,i(yr−1

i )

∥∥∥∥2

+
12p̃σ̃2

J

(5.55)

≤ 200

β
E[Q̃r − Q̃r+1] +

612p̃σ̃2

J

(ii)
= 1100

( N∑
i=1

√
Lµ,i

)2

E[Q̃r − Q̃r+1] +
612p̃σ̃2

J
, (5.127)

where in (i) we utilize (5.115). To get (ii) let us pick ρi =
5.5Lµ,i
pi

, therefore we have ρi =

5.5Lµ,i
∑N
i=1 ρi
ρi

, which leads to ρi =
√

5.5Lµ,i
∑N

j=1 ρj =
√

5.5Lµ,i

√∑N
j=1 ρj . Summing both sides

over i = 1, 2, · · ·N , and simplifying the result we get√√√√ N∑
i=1

ρi =

N∑
i=1

√
5.5Lµ,i.

Finally, squaring both sides and set β := 1/
∑N

i=1 ρi we reach 1
β = 5.5(

∑N
i=1

√
Lµ,i)

2. Let us sum

both sides of (5.127) over T iterations, use telescopic property, and divide both sides by T , we

obtain

1

T

T∑
r=1

Ψr
µ ≤ 1100

( N∑
i=1

√
Lµ,i

)2E[Q̃1 − Q̃T+1]

T
+

612p̃σ̃2

J
.

Since u is uniformly random number in {1, 2, · · · , T}, we finally have

Eu[Ψu
µ] ≤ 1100

( N∑
i=1

√
Lµ,i

)2E[Q̃1 − Q̃T+1]

T
+

612p̃σ̃2

J
. (5.128)
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Now let us bound the gap Ψr. Using the definition of Ψr we have

Ψr =
1

β2
E
[
‖xr − prox

1/β
h [xr − β∇f(xr)]

]
=

1

β2
E
[
‖xr − prox

1/β
h [xr − β∇f(xr)]− prox

1/β
h [xr − β∇fµ(xr)] + prox

1/β
h [xr − β∇fµ(xr)]‖2

]
(i)

≤ 2Ψr
µ +

µ2L2(M + 3)3

2
,

where in (i) we use (5.31); the nonexpansiveness of the prox operator; and inequality (5.5). Next

because r is a uniformly random number picked form {1, 2, · · · , T} we have

Eu[Ψu] ≤ 2Eu[Ψu
µ] +

µ2L2(M + 3)3

2

(5.128)

≤ 2200
( N∑
i=1

√
Lµ,i

)2E[Q̃1 − Q̃T+1]

T
+
µ2L2(M + 3)3

2
+

1024p̃σ̃2

J
. (5.129)

The proof is complete. Q.E.D.
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Table 5.1: Comparison results for ZONE-M and RGF

opt-gap cons-error

N ZONE-M(C) ZONE-M(I) RGF ZONE-M(C) ZONE-M(I) RGF

10 6.8E-6 8.8E-6 1.7E-4 2.5E-5 2.0E-5 0.002

20 4.2E-5 2.2E-5 5.3E-3 3.1E-5 2.2E-5 0.003

40 7.0E-5 3.0E-5 1.8E-3 3.8E-4 2.8E-4 0.017

80 5.7E-4 7.5E-5 0.014 5.4E-4 3.0E-4 0.09
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